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Abstract
We report on the birth and evolution of Lua and discuss how
it moved from a simple configuration language to a versatile,
widely used language that supports extensible semantics,
anonymous functions, full lexical scoping, proper tail calls,
and coroutines.

Categories and Subject Descriptors K.2 [HISTORY OF
COMPUTING]: Software; D.3 [PROGRAMMING LAN-
GUAGES]

1. Introduction
Lua is a scripting language born in 1993 at PUC-Rio, the
Pontifical Catholic University of Rio de Janeiro in Brazil.
Since then, Lua has evolved to become widely used in all
kinds of industrial applications, such as robotics, literate
programming, distributed business, image processing, exten-
sible text editors, Ethernet switches, bioinformatics, finite-
element packages, web development, and more [2]. In par-
ticular, Lua is one of the leading scripting languages in game
development.

Lua has gone far beyond our most optimistic expecta-
tions. Indeed, while almost all programming languages come
from North America and Western Europe (with the notable
exception of Ruby, from Japan) [4], Lua is the only language
created in a developing country to have achieved global rel-
evance.

From the start, Lua was designed to be simple, small,
portable, fast, and easily embedded into applications. These
design principles are still in force, and we believe that they
account for Lua’s success in industry. The main characteris-
tic of Lua, and a vivid expression of its simplicity, is that it
offers a single kind of data structure, the table, which is the
Lua term for an associative array [9]. Although most script-

ing languages offer associative arrays, in no other language
do associative arrays play such a central role. Lua tables
provide simple and efficient implementations for modules,
prototype-based objects, class-based objects, records, arrays,
sets, bags, lists, and many other data structures [28].

In this paper, we report on the birth and evolution of Lua.
We discuss how Lua moved from a simple configuration
language to a powerful (but still simple) language that sup-
ports extensible semantics, anonymous functions, full lexical
scoping, proper tail calls, and coroutines. In §2 we give an
overview of the main concepts in Lua, which we use in the
other sections to discuss how Lua has evolved. In §3 we re-
late the prehistory of Lua, that is, the setting that led to its
creation. In §4 we relate how Lua was born, what its original
design goals were, and what features its first version had. A
discussion of how and why Lua has evolved is given in §5.
A detailed discussion of the evolution of selected features
is given in §6. The paper ends in §7 with a retrospective of
the evolution of Lua and in §8 with a brief discussion of the
reasons for Lua’s success, especially in games.

2. Overview
In this section we give a brief overview of the Lua language
and introduce the concepts discussed in §5 and §6. For a
complete definition of Lua, see its reference manual [32].
For a detailed introduction to Lua, see Roberto’s book [28].
For concreteness, we shall describe Lua 5.1, which is the
current version at the time of this writing (April 2007), but
most of this section applies unchanged to previous versions.

Syntactically, Lua is reminiscent of Modula and uses
familiar keywords. To give a taste of Lua’s syntax, the code
below shows two implementations of the factorial function,
one recursive and another iterative. Anyone with a basic
knowledge of programming can probably understand these
examples without explanation.

function factorial(n) function factorial(n)

if n == 0 then local a = 1

return 1 for i = 1,n do

else a = a*i

return n*factorial(n-1) end

end return a

end end



Semantically, Lua has many similarities with Scheme,
even though these similarities are not immediately clear be-
cause the two languages are syntactically very different. The
influence of Scheme on Lua has gradually increased during
Lua’s evolution: initially, Scheme was just a language in the
background, but later it became increasingly important as
a source of inspiration, especially with the introduction of
anonymous functions and full lexical scoping.

Like Scheme, Lua is dynamically typed: variables do not
have types; only values have types. As in Scheme, a variable
in Lua never contains a structured value, only a reference to
one. As in Scheme, a function name has no special status in
Lua: it is just a regular variable that happens to refer to a
function value. Actually, the syntax for function definition
‘function foo() · · · end’ used above is just syntactic
sugar for the assignment of an anonymous function to a
variable: ‘foo = function () · · · end’. Like Scheme, Lua
has first-class functions with lexical scoping. Actually, all
values in Lua are first-class values: they can be assigned
to global and local variables, stored in tables, passed as
arguments to functions, and returned from functions.

One important semantic difference between Lua and
Scheme — and probably the main distinguishing feature of
Lua — is that Lua offers tables as its sole data-structuring
mechanism. Lua tables are associative arrays [9], but with
some important features. Like all values in Lua, tables are
first-class values: they are not bound to specific variable
names, as they are in Awk and Perl. A table can have any
value as key and can store any value. Tables allow sim-
ple and efficient implementation of records (by using field
names as keys), sets (by using set elements as keys), generic
linked structures, and many other data structures. Moreover,
we can use a table to implement an array by using natural
numbers as indices. A careful implementation [31] ensures
that such a table uses the same amount of memory that an
array would (because it is represented internally as an actual
array) and performs better than arrays in similar languages,
as independent benchmarks show [1].

Lua offers an expressive syntax for creating tables in
the form of constructors. The simplest constructor is the
expression ‘{}’, which creates a new, empty table. There are
also constructors to create lists (or arrays), such as

{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}

and to create records, such as

{lat= -22.90, long= -43.23, city= "Rio de Janeiro"}

These two forms can be freely mixed. Tables are indexed
using square brackets, as in ‘t[2]’, with ‘t.x’ as sugar for
‘t["x"]’.

The combination of table constructors and functions
turns Lua into a powerful general-purpose procedural data-
description language. For instance, a bibliographic database
in a format similar to the one used in BibTEX [34] can be
written as a series of table constructors such as this:

article{"spe96",

authors = {"Roberto Ierusalimschy",

"Luiz Henrique de Figueiredo",

"Waldemar Celes"},

title = "Lua: an Extensible Extension Language",

journal = "Software: Practice & Experience",

year = 1996,

}

Although such a database seems to be an inert data file,
it is actually a valid Lua program: when the database is
loaded into Lua, each item in it invokes a function, because
‘article{· · ·}’ is syntactic sugar for ‘article({· · ·})’,
that is, a function call with a table as its single argument.
It is in this sense that such files are called procedural data
files.

We say that Lua is an extensible extension language [30].
It is an extension language because it helps to extend ap-
plications through configuration, macros, and other end-user
customizations. Lua is designed to be embedded into a host
application so that users can control how the application be-
haves by writing Lua programs that access application ser-
vices and manipulate application data. It is extensible be-
cause it offers userdata values to hold application data and
extensible semantics mechanisms to manipulate these values
in natural ways. Lua is provided as a small core that can be
extended with user functions written in both Lua and C. In
particular, input and output, string manipulation, mathema-
tical functions, and interfaces to the operating system are all
provided as external libraries.

Other distinguishing features of Lua come from its im-
plementation:

Portability: Lua is easy to build because it is implemented
in strict ANSI C.1 It compiles out-of-the-box on most
platforms (Linux, Unix, Windows, Mac OS X, etc.), and
runs with at most a few small adjustments in virtually
all platforms we know of, including mobile devices (e.g.,
handheld computers and cell phones) and embedded mi-
croprocessors (e.g., ARM and Rabbit). To ensure porta-
bility, we strive for warning-free compilations under as
many compilers as possible.

Ease of embedding: Lua has been designed to be easily
embedded into applications. An important part of Lua is
a well-defined application programming interface (API)
that allows full communication between Lua code and
external code. In particular, it is easy to extend Lua by
exporting C functions from the host application. The API
allows Lua to interface not only with C and C++, but also
with other languages, such as Fortran, Java, Smalltalk,
Ada, C# (.Net), and even with other scripting languages
(e.g., Perl and Ruby).

1 Actually, Lua is implemented in “clean C”, that is, the intersection of C
and C++. Lua compiles unmodified as a C++ library.



Small size: Adding Lua to an application does not bloat it.
The whole Lua distribution, including source code, doc-
umentation, and binaries for some platforms, has always
fit comfortably on a floppy disk. The tarball for Lua 5.1,
which contains source code, documentation, and exam-
ples, takes 208K compressed and 835K uncompressed.
The source contains around 17,000 lines of C. Under
Linux, the Lua interpreter built with all standard Lua li-
braries takes 143K. The corresponding numbers for most
other scripting languages are more than an order of mag-
nitude larger, partially because Lua is primarily meant to
be embedded into applications and so its official distri-
bution includes only a few libraries. Other scripting lan-
guages are meant to be used standalone and include many
libraries.

Efficiency: Independent benchmarks [1] show Lua to be
one of the fastest languages in the realm of interpreted
scripting languages. This allows application developers
to write a substantial fraction of the whole application
in Lua. For instance, over 40% of Adobe Lightroom is
written in Lua (that represents around 100,000 lines of
Lua code).

Although these are features of a specific implementation,
they are possible only due to the design of Lua. In particular,
Lua’s simplicity is a key factor in allowing a small, efficient
implementation [31].

3. Prehistory
Lua was born in 1993 inside Tecgraf, the Computer Graph-
ics Technology Group of PUC-Rio in Brazil. The cre-
ators of Lua were Roberto Ierusalimschy, Luiz Henrique
de Figueiredo, and Waldemar Celes. Roberto was an assis-
tant professor at the Department of Computer Science of
PUC-Rio. Luiz Henrique was a post-doctoral fellow, first at
IMPA and later at Tecgraf. Waldemar was a Ph.D. student in
Computer Science at PUC-Rio. All three were members of
Tecgraf, working on different projects there before getting
together to work on Lua. They had different, but related,
backgrounds: Roberto was a computer scientist interested
mainly in programming languages; Luiz Henrique was a
mathematician interested in software tools and computer
graphics; Waldemar was an engineer interested in appli-
cations of computer graphics. (In 2001, Waldemar joined
Roberto as faculty at PUC-Rio and Luiz Henrique became a
researcher at IMPA.)

Tecgraf is a large research and development laboratory
with several industrial partners. During the first ten years
after its creation in May 1987, Tecgraf focused mainly on
building basic software tools to enable it to produce the inter-
active graphical programs needed by its clients. Accordingly,
the first Tecgraf products were drivers for graphical termi-
nals, plotters, and printers; graphical libraries; and graphical
interface toolkits. From 1977 until 1992, Brazil had a pol-

icy of strong trade barriers (called a “market reserve”) for
computer hardware and software motivated by a national-
istic feeling that Brazil could and should produce its own
hardware and software. In that atmosphere, Tecgraf’s clients
could not afford, either politically or financially, to buy cus-
tomized software from abroad: by the market reserve rules,
they would have to go through a complicated bureaucratic
process to prove that their needs could not be met by Brazil-
ian companies. Added to the natural geographical isolation
of Brazil from other research and development centers, those
reasons led Tecgraf to implement from scratch the basic
tools it needed.

One of Tecgraf’s largest partners was (and still is) Petro-
bras, the Brazilian oil company. Several Tecgraf products
were interactive graphical programs for engineering appli-
cations at Petrobras. By 1993, Tecgraf had developed little
languages for two of those applications: a data-entry appli-
cation and a configurable report generator for lithology pro-
files. These languages, called DEL and SOL, were the an-
cestors of Lua. We describe them briefly here to show where
Lua came from.

3.1 DEL
The engineers at Petrobras needed to prepare input data files
for numerical simulators several times a day. This process
was boring and error-prone because the simulation programs
were legacy code that needed strictly formatted input files —
typically bare columns of numbers, with no indication of
what each number meant, a format inherited from the days
of punched cards. In early 1992, Petrobras asked Tecgraf to
create at least a dozen graphical front-ends for this kind of
data entry. The numbers would be input interactively, just
by clicking on the relevant parts of a diagram describing
the simulation — a much easier and more meaningful task
for the engineers than editing columns of numbers. The
data file, in the correct format for the simulator, would be
generated automatically. Besides simplifying the creation of
data files, such front-ends provided the opportunity to add
data validation and also to compute derived quantities from
the input data, thus reducing the amount of data needed from
the user and increasing the reliability of the whole process.

To simplify the development of those front-ends, a team
led by Luiz Henrique de Figueiredo and Luiz Cristovão
Gomes Coelho decided to code all front-ends in a uni-
form way, and so designed DEL (“data-entry language”),
a simple declarative language to describe each data-entry
task [17]. DEL was what is now called a domain-specific lan-
guage [43], but was then simply called a little language [10].

A typical DEL program defined several “entities”. Each
entity could have several fields, which were named and
typed. For implementing data validation, DEL had predi-
cate statements that imposed restrictions on the values of
entities. DEL also included statements to specify how data
was to be input and output. An entity in DEL was essen-
tially what is called a structure or record in conventional



programming languages. The important difference — and
what made DEL suitable for the data-entry problem — is that
entity names also appeared in a separate graphics metafile,
which contained the associated diagram over which the en-
gineer did the data entry. A single interactive graphical inter-
preter called ED (an acronym for ‘entrada de dados’, which
means ‘data entry’ in Portuguese) was written to interpret
DEL programs. All those data-entry front-ends requested
by Petrobras were implemented as DEL programs that ran
under this single graphical application.

DEL was a success both among the developers at Tec-
graf and among the users at Petrobras. At Tecgraf, DEL
simplified the development of those front-ends, as originally
intended. At Petrobras, DEL allowed users to tailor data-
entry applications to their needs. Soon users began to de-
mand more power from DEL, such as boolean expressions
for controlling whether an entity was active for input or not,
and DEL became heavier. When users began to ask for con-
trol flow, with conditionals and loops, it was clear that ED
needed a real programming language instead of DEL.

3.2 SOL
At about the same time that DEL was created, a team lead by
Roberto Ierusalimschy and Waldemar Celes started working
on PGM, a configurable report generator for lithology pro-
files, also for Petrobras. The reports generated by PGM con-
sisted of several columns (called “tracks”) and were highly
configurable: users could create and position the tracks, and
could choose colors, fonts, and labels; each track could have
a grid, which also had its set of options (log/linear, verti-
cal and horizontal ticks, etc.); each curve had its own scale,
which had to be changed automatically in case of overflow;
etc. All this configuration was to be done by the end-users,
typically geologists and engineers from Petrobras working
in oil plants and off-shore platforms. The configurations had
to be stored in files, for reuse. The team decided that the best
way to configure PGM was through a specialized description
language called SOL, an acronym for Simple Object Lan-
guage.

Because PGM had to deal with many different objects,
each with many different attributes, the SOL team decided
not to fix those objects and attributes into the language. In-
stead, SOL allowed type declarations, as in the code below:

type @track{ x:number, y:number=23, id=0 }

type @line{ t:@track=@track{x=8}, z:number* }

T = @track{ y=9, x=10, id="1992-34" }

L = @line{ t=@track{x=T.y, y=T.x}, z=[2,3,4] }

This code defines two types, track and line, and creates
two objects, a track T and a line L. The track type contains
two numeric attributes, x and y, and an untyped attribute, id;
attributes y and id have default values. The line type con-
tains a track t and a list of numbers z. The track t has as
default value a track with x=8, y=23, and id=0. The syntax

of SOL was strongly influenced by BibTEX [34] and UIL, a
language for describing user interfaces in Motif [39].

The main task of the SOL interpreter was to read a report
description, check whether the given objects and attributes
were correctly typed, and then present the information to the
main program (PGM). To allow the communication between
the main program and the SOL interpreter, the latter was
implemented as a C library that was linked to the main
program. The main program could access all configuration
information through an API in this library. In particular, the
main program could register a callback function for each
type, which the SOL interpreter would call to create an
object of that type.

4. Birth
The SOL team finished an initial implementation of SOL
in March 1993, but they never delivered it. PGM would
soon require support for procedural programming to allow
the creation of more sophisticated layouts, and SOL would
have to be extended. At the same time, as mentioned before,
ED users had requested more power from DEL. ED also
needed further descriptive facilities for programming its user
interface. Around mid-1993, Roberto, Luiz Henrique, and
Waldemar got together to discuss DEL and SOL, and con-
cluded that the two languages could be replaced by a single,
more powerful language, which they decided to design and
implement. Thus the Lua team was born; it has not changed
since.

Given the requirements of ED and PGM, we decided that
we needed a real programming language, with assignments,
control structures, subroutines, etc. The language should
also offer data-description facilities, such as those offered
by SOL. Moreover, because many potential users of the
language were not professional programmers, the language
should avoid cryptic syntax and semantics. The implemen-
tation of the new language should be highly portable, be-
cause Tecgraf’s clients had a very diverse collection of com-
puter platforms. Finally, since we expected that other Tec-
graf products would also need to embed a scripting lan-
guage, the new language should follow the example of SOL
and be provided as a library with a C API.

At that point, we could have adopted an existing scripting
language instead of creating a new one. In 1993, the only real
contender was Tcl [40], which had been explicitly designed
to be embedded into applications. However, Tcl had unfa-
miliar syntax, did not offer good support for data description,
and ran only on Unix platforms. We did not consider LISP
or Scheme because of their unfriendly syntax. Python was
still in its infancy. In the free, do-it-yourself atmosphere that
then reigned in Tecgraf, it was quite natural that we should
try to develop our own scripting language. So, we started
working on a new language that we hoped would be simpler
to use than existing languages. Our original design decisions
were: keep the language simple and small, and keep the im-



plementation simple and portable. Because the new language
was partially inspired by SOL (sun in Portuguese), a friend
at Tecgraf (Carlos Henrique Levy) suggested the name ‘Lua’
(moon in Portuguese), and Lua was born. (DEL did not in-
fluence Lua as a language. The main influence of DEL on
the birth of Lua was rather the realization that large parts
of complex applications could be written using embeddable
scripting languages.)

We wanted a light full language with data-description fa-
cilities. So we took SOL’s syntax for record and list con-
struction (but not type declaration), and unified their imple-
mentation using tables: records use strings (the field names)
as indices; lists use natural numbers. An assignment such as

T = @track{ y=9, x=10, id="1992-34" }

which was valid in SOL, remained valid in Lua, but with
a different meaning: it created an object (that is, a table)
with the given fields, and then called the function track on
this table to validate the object or perhaps to provide default
values to some of its fields. The final value of the expression
was that table.

Except for its procedural data-description constructs, Lua
introduced no new concepts: Lua was created for production
use, not as an academic language designed to support re-
search in programming languages. So, we simply borrowed
(even unconsciously) things that we had seen or read about
in other languages. We did not reread old papers to remem-
ber details of existing languages. We just started from what
we knew about other languages and reshaped that according
to our tastes and needs.

We quickly settled on a small set of control structures,
with syntax mostly borrowed from Modula (while, if, and
repeat until). From CLU we took multiple assignment
and multiple returns from function calls. We regarded mul-
tiple returns as a simpler alternative to reference parameters
used in Pascal and Modula and to in-out parameters used in
Ada; we also wanted to avoid explicit pointers (used in C).
From C++ we took the neat idea of allowing a local vari-
able to be declared only where we need it. From SNOBOL
and Awk we took associative arrays, which we called tables;
however, tables were to be objects in Lua, not attached to
variables as in Awk.

One of the few (and rather minor) innovations in Lua was
the syntax for string concatenation. The natural ‘+’ operator
would be ambiguous, because we wanted automatic coer-
cion of strings to numbers in arithmetic operations. So, we
invented the syntax ‘..’ (two dots) for string concatenation.

A polemic point was the use of semicolons. We thought
that requiring semicolons could be a little confusing for en-
gineers with a Fortran background, but not allowing them
could confuse those with a C or Pascal background. In typi-
cal committee fashion, we settled on optional semicolons.

Initially, Lua had seven types: numbers (implemented
solely as reals), strings, tables, nil, userdata (pointers to
C objects), Lua functions, and C functions. To keep the lan-
guage small, we did not initially include a boolean type:
as in Lisp, nil represented false and any other value repre-
sented true. Over 13 years of continuous evolution, the only
changes in Lua types were the unification of Lua functions
and C functions into a single function type in Lua 3.0 (1997)
and the introduction of booleans and threads in Lua 5.0
(2003) (see §6.1). For simplicity, we chose to use dynamic
typing instead of static typing. For applications that needed
type checking, we provided basic reflective facilities, such
as run-time type information and traversal of the global en-
vironment, as built-in functions (see §6.11).

By July 1993, Waldemar had finished the first implemen-
tation of Lua as a course project supervised by Roberto.
The implementation followed a tenet that is now central to
Extreme Programming: “the simplest thing that could pos-
sibly work” [7]. The lexical scanner was written with lex
and the parser with yacc, the classic Unix tools for imple-
menting languages. The parser translated Lua programs into
instructions for a stack-based virtual machine, which were
then executed by a simple interpreter. The C API made it
easy to add new functions to Lua, and so this first version
provided only a tiny library of five built-in functions (next,
nextvar, print, tonumber, type) and three small exter-
nal libraries (input and output, mathematical functions, and
string manipulation).

Despite this simple implementation — or possibly be-
cause of it — Lua surpassed our expectations. Both PGM
and ED used Lua successfully (PGM is still in use today;
ED was replaced by EDG [12], which was mostly written
in Lua). Lua was an immediate success in Tecgraf and soon
other projects started using it. This initial use of Lua at Tec-
graf was reported in a brief talk at the VII Brazilian Sympo-
sium on Software Engineering, in October 1993 [29].

The remainder of this paper relates our journey in im-
proving Lua.

5. History
Figure 1 shows a timeline of the releases of Lua. As can be
seen, the time interval between versions has been gradually
increasing since Lua 3.0. This reflects our perception that

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1

Figure 1. The releases of Lua.



1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1
constructors • • • • • • • • • • • •
garbage collection • • • • • • • • • • • •
extensible semantics ◦ ◦ • • • • • • • • • •
support for OOP ◦ ◦ • • • • • • • • • •
long strings ◦ ◦ ◦ • • • • • • • • •
debug API ◦ ◦ ◦ • • • • • • • • •
external compiler ◦ ◦ ◦ ◦ • • • • • • • •
vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • •
pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • •
conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦
anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • •
debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1
libraries 4 4 4 4 4 4 4 4 5 6 8 9
built-in functions 5 7 11 11 13 14 25 27 35 0 0 0
API functions 30 30 30 30 32 32 33 47 41 60 76 79
vm type (stack × register) S S S S S S S S S S R R
vm instructions 64 65 69 67 67 68 69 128 64 49 35 38
keywords 16 16 16 16 16 16 16 16 16 18 21 21
other tokens 21 21 23 23 23 23 24 25 25 25 24 26

Table 1. The evolution of features in Lua.

Lua was becoming a mature product and needed stability for
the benefit of its growing community. Nevertheless, the need
for stability has not hindered progress. Major new versions
of Lua, such as Lua 4.0 and Lua 5.0, have been released since
then.

The long times between versions also reflects our release
model. Unlike other open-source projects, our alpha versions
are quite stable and beta versions are essentially final, except
for uncovered bugs.2 This release model has proved to be
good for Lua stability. Several products have been shipped
with alpha or beta versions of Lua and worked fine. How-
ever, this release model did not give users much chance to
experiment with new versions; it also deprived us of timely
feedback on proposed changes. So, during the development
of Lua 5.0 we started to release “work” versions, which are
just snapshots of the current development of Lua. This move
brought our current release model closer to the “Release
Early, Release Often” motto of the open-source community.

2 The number of bugs found after final versions were released has been
consistently small: only 10 in Lua 4.0, 17 in Lua 5.0, and 10 in Lua 5.1
so far, none of them critical bugs.

In the remainder of this section we discuss some mile-
stones in the evolution of Lua. Details on the evolution of
several specific features are given in §6. Table 1 summarizes
this evolution. It also contains statistics about the size of Lua,
which we now discuss briefly.

The number of standard libraries has been kept small be-
cause we expect that most Lua functions will be provided by
the host application or by third-party libraries. Until Lua 3.1,
the only standard libraries were for input and output, string
manipulation, mathematical functions, and a special library
of built-in functions, which did not use the C API but directly
accessed the internal data structures. Since then, we have
added libraries for debugging (Lua 3.2), interfacing with the
operating system (Lua 4.0), tables and coroutines (Lua 5.0),
and modules (Lua 5.1).

The size of C API changed significantly when it was re-
designed in Lua 4.0. Since then, it has moved slowly toward
completeness. As a consequence, there are no longer any
built-in functions: all standard libraries are implemented on
top the C API, without accessing the internals of Lua.

The virtual machine, which executes Lua programs, was
stack-based until Lua 4.0. In Lua 3.1 we added variants



for many instructions, to try to improve performance. How-
ever, this turned out to be too complicated for little per-
formance gain and we removed those variants in Lua 3.2.
Since Lua 5.0, the virtual machine is register-based [31].
This change gave the code generator more opportunities for
optimization and reduced the number of instructions of typi-
cal Lua programs. (Instruction dispatch is a significant frac-
tion of the time spent in the virtual machine [13].) As far
as we know, the virtual machine of Lua 5.0 was the first
register-based virtual machine to have wide use.

5.1 Lua 1
The initial implementation of Lua was a success in Tec-
graf and Lua attracted users from other Tecgraf projects.
New users create new demands. Several users wanted to use
Lua as the support language for graphics metafiles, which
abounded in Tecgraf. Compared with other programmable
metafiles, Lua metafiles have the advantage of being based
on a truly procedural language: it is natural to model com-
plex objects by combining procedural code fragments with
declarative statements. In contrast, for instance, VRML [8]
must use another language (Javascript) to model procedural
objects.

The use of Lua for this kind of data description, especially
large graphics metafiles, posed challenges that were unusual
for typical scripting languages. For instance, it was not un-
common for a diagram used in the data-entry program ED
to have several thousand parts described by a single Lua ta-
ble constructor with several thousand items. That meant that
Lua had to cope with huge programs and huge expressions.
Because Lua precompiled all programs to bytecode for a vir-
tual machine on the fly, it also meant that the Lua compiler
had to run fast, even for large programs.

By replacing the lex-generated scanner used in the first
version by a hand-written one, we almost doubled the speed
of the Lua compiler on typical metafiles. We also modified
Lua’s virtual machine to handle a long constructor by adding
key-value pairs to the table in batches, not individually as in
the original virtual machine. These changes solved the initial
demands for better performance. Since then, we have always
tried to reduce the time spent on precompilation.

In July 1994, we released a new version of Lua with those
optimizations. This release coincided with the publication of
the first paper describing Lua, its design, and its implementa-
tion [15]. We named the new version ‘Lua 1.1’. The previous
version, which was never publicly released, was then named
‘Lua 1.0’. (A snapshot of Lua 1.0 taken in July 1993 was
released in October 2003 to celebrate 10 years of Lua.)

Lua 1.1 was publicly released as software available in
source code by ftp, before the open-source movement got its
current momentum. Lua 1.1 had a restrictive user license: it
was freely available for academic purposes but commercial
uses had to be negotiated. That part of the license did not
work: although we had a few initial contacts, no commer-
cial uses were ever negotiated. This and the fact that other

scripting languages (e.g, Tcl) were free made us realize that
restrictions on commercial uses might even discourage aca-
demic uses, since some academic projects plan to go to mar-
ket eventually. So, when the time came to release the next
version (Lua 2.1), we chose to release it as unrestricted free
software. Naively, we wrote our own license text as a slight
collage and rewording of existing licenses. We thought it
was clear that the new license was quite liberal. Later, how-
ever, with the spread of open-source licenses, our license text
became a source of noise among some users; in particular,
it was not clear whether our license was compatible with
GPL. In May 2002, after a long discussion in the mailing
list, we decided to release future versions of Lua (starting
with Lua 5.0) under the well-known and very liberal MIT
license [3]. In July 2002, the Free Software Foundation con-
firmed that our previous license was compatible with GPL,
but we were already committed to adopting the MIT license.
Questions about our license have all but vanished since then.

5.2 Lua 2
Despite all the hype surrounding object-oriented program-
ming (which in the early 1990s had reached its peak) and
the consequent user pressure to add object-oriented features
to Lua, we did not want to turn Lua into an object-oriented
language because we did not want to fix a programming
paradigm for Lua. In particular, we did not think that Lua
needed objects and classes as primitive language concepts,
especially because they could be implemented with tables if
needed (a table can hold both object data and methods, since
functions are first-class values). Despite recurring user pres-
sure, we have not changed our minds to this day: Lua does
not force any object or class model onto the programmer.
Several object models have been proposed and implemented
by users; it is a frequent topic of discussion in our mailing
list. We think this is healthy.

On the other hand, we wanted to allow object-oriented
programming with Lua. Instead of fixing a model, we de-
cided to provide flexible mechanisms that would allow the
programmer to build whatever model was suitable to the ap-
plication. Lua 2.1, released in February 1995, marked the in-
troduction of these extensible semantics mechanisms, which
have greatly increased the expressiveness of Lua. Extensible
semantics has become a hallmark of Lua.

One of the goals of extensible semantics was to allow ta-
bles to be used as a basis for objects and classes. For that,
we needed to implement inheritance for tables. Another goal
was to turn userdata into natural proxies for application data,
not merely handles meant to be used solely as arguments to
functions. We wanted to be able to index userdata as if they
were tables and to call methods on them. This would allow
Lua to fulfill one of its main design goals more naturally:
to extend applications by providing scriptable access to ap-
plication services and data. Instead of adding mechanisms
to support all these features directly in the language, we de-
cided that it would be conceptually simpler to define a more



general fallback mechanism to let the programmer intervene
whenever Lua did not know how to proceed.

We introduced fallbacks in Lua 2.1 and defined them for
the following operations: table indexing, arithmetic oper-
ations, string concatenation, order comparisons, and func-
tion calls.3 When one of these operations was applied to
the “wrong” kind of values, the corresponding fallback
was called, allowing the programmer to determine how
Lua would proceed. The table indexing fallbacks allowed
userdata (and other values) to behave as tables, which was
one of our motivations. We also defined a fallback to be
called when a key was absent from a table, so that we
could support many forms of inheritance (through dele-
gation). To complete the support for object-oriented pro-
gramming, we added two pieces of syntactic sugar: method
definitions of the form ‘function a:foo(· · ·)’ as sugar
for ‘function a.foo(self,· · ·)’ and method calls of the
form ‘a:foo(· · ·)’ as sugar for ‘a.foo(a,· · ·)’. In §6.8 we
discuss fallbacks in detail and how they evolved into their
later incarnations: tag methods and metamethods.

Since Lua 1.0, we have provided introspective functions
for values: type, which queries the type of a Lua value;
next, which traverses a table; and nextvar, which traverses
the global environment. (As mentioned in §4, this was par-
tially motivated by the need to implement SOL-like type
checking.) In response to user pressure for full debug fa-
cilities, Lua 2.2 (November 1995) introduced a debug API
to provide information about running functions. This API
gave users the means to write in C their own introspective
tools, such as debuggers and profilers. The debug API was
initially quite simple: it allowed access to the Lua call stack,
to the currently executing line, and provided a function to
find the name of a variable holding a given value. Following
the M.Sc. work of Tomás Gorham [22], the debug API was
improved in Lua 2.4 (May 1996) by functions to access local
variables and hooks to be called at line changes and function
calls.

With the widespread use of Lua at Tecgraf, many large
graphics metafiles were being written in Lua as the output
of graphical editors. Loading such metafiles was taking in-
creasingly longer as they became larger and more complex.4

Since its first version, Lua precompiled all programs to byte-
code just before running them. The load time of a large pro-
gram could be substantially reduced by saving this bytecode
to a file. This would be especially relevant for procedural
data files such as graphics metafiles. So, in Lua 2.4, we in-
troduced an external compiler, called luac, which precom-
piled a Lua program and saved the generated bytecode to a
binary file. (Our first paper about Lua [15] had already an-

3 We also introduced fallbacks for handling fatal errors and for monitoring
garbage collection, even though they were not part of extensible semantics.
4 Surprisingly, a substantial fraction of the load time was taken in the lexer
for converting real numbers from text form to floating-point representation.
Real numbers abound in graphics metafiles.

ticipated the possibility of an external compiler.) The format
of this file was chosen to be easily loaded and reasonably
portable. With luac, programmers could avoid parsing and
code generation at run time, which in the early days were
costly. Besides faster loading, luac also allowed off-line
syntax checking and protection from casual user changes.
Many products (e.g., The Sims and Adobe Lightroom) dis-
tribute Lua scripts in precompiled form.

During the implementation of luac, we started to restruc-
ture Lua’s core into clearly separated modules. As a conse-
quence, it is now quite easy to remove the parsing modules
(lexer, parser, and code generator), which currently repre-
sent 35% of the core code, leaving just the module that loads
precompiled Lua programs, which is merely 3% of the core
code. This reduction can be significant when embedding Lua
in small devices such as mobile devices, robots and sensors.5

Since its first version, Lua has included a library for
string-processing. The facilities provided by this library
were minimal until Lua 2.4. However, as Lua matured, it
became desirable to do heavier text processing in Lua. We
thought that a natural addition to Lua would be pattern
matching, in the tradition of Snobol, Icon, Awk, and Perl.
However, we did not want to include a third-party pattern-
matching engine in Lua because such engines tend to be very
large; we also wanted to avoid copyright issues that could be
raised by including third-party code in Lua.

As a student project supervised by Roberto in the second
semester of 1995, Milton Jonathan, Pedro Miller
Rabinovitch, Pedro Willemsens, and Vinicius Almendra pro-
duced a pattern-matching library for Lua. Experience with
that design led us to write our own pattern-matching en-
gine for Lua, which we added to Lua 2.5 (November 1996)
in two functions: strfind (which originally only found
plain substrings) and the new gsub function (a name taken
from Awk). The gsub function globally replaced substrings
matching a given pattern in a larger string. It accepted either
a replacement string or a function that was called each time
a match was found and was intended to return the replace-
ment string for that match. (That was an innovation at the
time.) Aiming at a small implementation, we did not include
full regular expressions. Instead, the patterns understood by
our engine were based on character classes, repetitions, and
captures (but not alternation or grouping). Despite its sim-
plicity, this kind of pattern matching is quite powerful and
was an important addition to Lua.

That year was a turning point in the history of Lua be-
cause it gained international exposure. In June 1996 we pub-
lished a paper about Lua in Software: Practice & Experi-
ence [30] that brought external attention to Lua, at least in

5 Crazy Ivan, a robot that won RoboCup in 2000 and 2001 in Denmark,
had a “brain” implemented in Lua. It ran directly on a Motorola Coldfire
5206e processor without any operating system (in other words, Lua was the
operating system). Lua was stored on a system ROM and loaded programs
at startup from the serial port.



academic circles.6 In December 1996, shortly after Lua 2.5
was released, the magazine Dr. Dobb’s Journal featured
an article about Lua [16]. Dr. Dobb’s Journal is a popular
publication aimed directly at programmers, and that article
brought Lua to the attention of the software industry. Among
several messages that we received right after that publication
was one sent in January 1997 by Bret Mogilefsky, who was
the lead programmer of Grim Fandango, an adventure game
then under development by LucasArts. Bret told us that he
had read about Lua in Dr. Dobb’s and that they planned to re-
place their home-brewed scripting language with Lua. Grim
Fandango was released in October 1998 and in May 1999
Bret told us that “a tremendous amount of the game was
written in Lua” (his emphasis) [38].7 Around that time, Bret
attended a roundtable about game scripting at the Game De-
velopers’ Conference (GDC, the main event for game pro-
grammers) and at the end he related his experience with the
successful use of Lua in Grim Fandango. We know of several
developers who first learned about Lua at that event. After
that, Lua spread by word of mouth among game developers
to become a definitely marketable skill in the game industry
(see §8).

As a consequence of Lua’s international exposure, the
number of messages sent to us asking questions about Lua
increased substantially. To handle this traffic more effi-
ciently, and also to start building a Lua community, so that
other people could answer Lua questions, in February 1997
we created a mailing list for discussing Lua. Over 38,000
messages have been posted to this list since then. The use
of Lua in many popular games has attracted many people to
the list, which now has over 1200 subscribers. We have been
fortunate that the Lua list is very friendly and at the same
time very technical. The list has become the focal point of
the Lua community and has been a source of motivation
for improving Lua. All important events occur first in the
mailing list: release announcements, feature requests, bug
reports, etc.

The creation of a comp.lang.lua Usenet newsgroup
was discussed twice in the list over all these years, in
April 1998 and in July 1999. The conclusion both times
was that the traffic in the list did not warrant the creation
of a newsgroup. Moreover, most people preferred a mailing
list. The creation of a newsgroup seems no longer relevant
because there are several web interfaces for reading and
searching the complete list archives.

6 In November 1997, that article won the First Prize (technological cate-
gory) in the II Compaq Award for Research and Development in Computer
Science, a joint venture of Compaq Computer in Brazil, the Brazilian Min-
istry of Science and Technology, and the Brazilian Academy of Sciences.
7 Grim Fandango mentioned Lua and PUC-Rio in its final credits. Several
people at PUC-Rio first learned about Lua from that credit screen, and
were surprised to learn that Brazilian software was part of a hit game. It
has always bothered us that Lua is widely known abroad but has remained
relatively unknown in Brazil until quite recently.

5.3 Lua 3
The fallback mechanism introduced in Lua 2.1 to support
extensible semantics worked quite well but it was a global
mechanism: there was only one hook for each event. This
made it difficult to share or reuse code because modules that
defined fallbacks for the same event could not co-exist eas-
ily. Following a suggestion by Stephan Herrmann in Decem-
ber 1996, in Lua 3.0 (July 1997) we solved the fallback clash
problem by replacing fallbacks with tag methods: the hooks
were attached to pairs (event, tag) instead of just to events.
Tags had been introduced in Lua 2.1 as integer labels that
could be attached to userdata (see §6.10); the intention was
that C objects of the same type would be represented in Lua
by userdata having the same tag. (However, Lua did not force
any interpretation on tags.) In Lua 3.0 we extended tags to
all values to support tag methods. The evolution of fallbacks
is discussed in §6.8.

Lua 3.1 (July 1998) brought functional programming to
Lua by introducing anonymous functions and function clo-
sures via “upvalues”. (Full lexical scoping had to wait until
Lua 5.0; see §6.6.) The introduction of closures was mainly
motivated by the existence of higher-order functions, such as
gsub, which took functions as arguments. During the work
on Lua 3.1, there were discussions in the mailing list about
multithreading and cooperative multitasking, mainly moti-
vated by the changes Bret Mogilefsky had made to Lua 2.5
and 3.1 alpha for Grim Fandango. No conclusions were
reached, but the topic remained popular. Cooperative multi-
tasking in Lua was finally provided in Lua 5.0 (April 2003);
see §6.7.

The C API remained largely unchanged from Lua 1.0
to Lua 3.2; it worked over an implicit Lua state. However,
newer applications, such as web services, needed multiple
states. To mitigate this problem, Lua 3.1 introduced multiple
independent Lua states that could be switched at run time.
A fully reentrant API would have to wait until Lua 4.0. In
the meantime, two unofficial versions of Lua 3.2 with ex-
plicit Lua states appeared: one written in 1998 by Roberto
Ierusalimschy and Anna Hester based on Lua 3.2 alpha for
CGILua [26], and one written in 1999 by Erik Hougaard
based on Lua 3.2 final. Erik’s version was publicly avail-
able and was used in the Crazy Ivan robot. The version for
CGILua was released only as part of the CGILua distribu-
tion; it never existed as an independent package.

Lua 3.2 (July 1999) itself was mainly a maintenance re-
lease; it brought no novelties except for a debug library that
allowed tools to be written in Lua instead of C. Neverthe-
less, Lua was quite stable by then and Lua 3.2 had a long
life. Because the next version (Lua 4.0) introduced a new,
incompatible API, many users just stayed with Lua 3.2 and
never migrated to Lua 4.0. For instance, Tecgraf never mi-
grated to Lua 4.0, opting to move directly to Lua 5.0; many
products at Tecgraf still use Lua 3.2.



5.4 Lua 4
Lua 4.0 was released in November 2000. As mentioned
above, the main change in Lua 4.0 was a fully reentrant API,
motivated by applications that needed multiple Lua states.
Since making the API fully reentrant was already a major
change, we took the opportunity and completely redesigned
the API around a clear stack metaphor for exchanging val-
ues with C (see §6.9). This was first suggested by Reuben
Thomas in July 2000.

Lua 4.0 also introduced a ‘for’ statement, then a top
item in the wish-list of most Lua users and a frequent topic
in the mailing list. We had not included a ‘for’ statement
earlier because ‘while’ loops were more general. However,
users complained that they kept forgetting to update the
control variable at the end of ‘while’ loops, thus leading to
infinite loops. Also, we could not agree on a good syntax.
We considered the Modula ‘for’ too restrictive because
it did not cover iterations over the elements of a table or
over the lines of a file. A ‘for’ loop in the C tradition
did not fit with the rest of Lua. With the introduction of
closures and anonymous functions in Lua 3.1, we decided
to use higher-order functions for implementing iterations.
So, Lua 3.1 provided a higher-order function that iterated
over a table by calling a user-supplied function over all pairs
in the table. To print all pairs in a table t, one simply said
‘foreach(t,print)’.

In Lua 4.0 we finally designed a ‘for’ loop, in two vari-
ants: a numeric loop and a table-traversal loop (first sug-
gested by Michael Spalinski in October 1997). These two
variants covered most common loops; for a really generic
loop, there was still the ‘while’ loop. Printing all pairs in a
table t could then be done as follows:8

for k,v in t do

print(k,v)

end

The addition of a ‘for’ statement was a simple one but it
did change the look of Lua programs. In particular, Roberto
had to rewrite many examples in his draft book on Lua
programming. Roberto had been writing this book since
1998, but he could never finish it because Lua was a moving
target. With the release of Lua 4.0, large parts of the book
and almost all its code snippets had to be rewritten.

Soon after the release of Lua 4.0, we started working
on Lua 4.1. Probably the main issue we faced for Lua 4.1
was whether and how to support multithreading, a big is-
sue at that time. With the growing popularity of Java and
Pthreads, many programmers began to consider support for
multithreading as an essential feature in any programming
language. However, for us, supporting multithreading in Lua
posed serious questions. First, to implement multithread-
ing in C requires primitives that are not part of ANSI C —

8 With the introduction of ‘for’ iterators in Lua 5.0, this syntax was marked
as obsolete and later removed in Lua 5.1.

although Pthreads was popular, there were (and still there
are) many platforms without this library. Second, and more
important, we did not (and still do not) believe in the stan-
dard multithreading model, which is preemptive concur-
rency with shared memory: we still think that no one can
write correct programs in a language where ‘a=a+1’ is not
deterministic.

For Lua 4.1, we tried to solve those difficulties in a typi-
cal Lua fashion: we implemented only a basic mechanism of
multiple stacks, which we called threads. External libraries
could use those Lua threads to implement multithreading,
based on a support library such as Pthreads. The same mech-
anism could be used to implement coroutines, in the form of
non-preemptive, collaborative multithreading. Lua 4.1 alpha
was released in July 2001 with support for external multi-
threading and coroutines; it also introduced support for weak
tables and featured a register-based virtual machine, with
which we wanted to experiment.

The day after Lua 4.1 alpha was released, John D. Rams-
dell started a big discussion in the mailing list about lexi-
cal scoping. After several dozen messages, it became clear
that Lua needed full lexical scoping, instead of the upvalue
mechanism adopted since Lua 3.1. By October 2001 we
had come up with an efficient implementation of full lexi-
cal scoping, which we released as a work version in Novem-
ber 2001. (See §6.6 for a detailed discussion of lexical scop-
ing.) That version also introduced a new hybrid representa-
tion for tables that let them be implemented as arrays when
appropriate (see §6.2 for further details). Because that ver-
sion implemented new basic algorithms, we decided to re-
lease it as a work version, even though we had already re-
leased an alpha version for Lua 4.1.

In February 2002 we released a new work version for
Lua 4.1, with three relevant novelties: a generic ‘for’ loop
based on iterator functions, metatables and metamethods
as a replacement for tags and fallbacks9 (see §6.8), and
coroutines (see §6.7). After that release, we realized that
Lua 4.1 would bring too many major changes — perhaps
‘Lua 5.0’ would be a better name for the next version.

5.5 Lua 5
The final blow to the name ‘Lua 4.1’ came a few days
later, during the Lua Library Design Workshop organized
by Christian Lindig and Norman Ramsey at Harvard. One of
the main conclusions of the workshop was that Lua needed
some kind of module system. Although we had always con-
sidered that modules could be implemented using tables, not
even the standard Lua libraries followed this path. We then
decided to take that step for the next version.

9 The use of ordinary Lua tables for implementing extensible semantics had
already been suggested by Stephan Herrmann in December 1996, but we
forgot all about it until it was suggested again by Edgar Toernig in Octo-
ber 2000, as part of a larger proposal, which he called ‘unified methods’.
The term ‘metatable’ was suggested by Rici Lake in November 2001.



Packaging library functions inside tables had a big practi-
cal impact, because it affected any program that used at least
one library function. For instance, the old strfind function
was now called string.find (field ‘find’ in string library
stored in the ‘string’ table); openfile became io.open;
sin became math.sin; and so on. To make the transition
easier, we provided a compatibility script that defined the
old functions in terms of the new ones:

strfind = string.find

openfile = io.open

sin = math.sin

...

Nevertheless, packaging libraries in tables was a major
change. In June 2002, when we released the next work
version incorporating this change, we dropped the name
‘Lua 4.1’ and named it ‘Lua 5.0 work0’. Progress to the
final version was steady from then on and Lua 5.0 was re-
leased in April 2003. This release froze Lua enough to allow
Roberto to finish his book, which was published in Decem-
ber 2003 [27].

Soon after the release of Lua 5.0 we started working
on Lua 5.1. The initial motivation was the implementation
of incremental garbage collection in response to requests
from game developers. Lua uses a traditional mark-and-
sweep garbage collector, and, until Lua 5.0, garbage col-
lection was performed atomically. As a consequence, some
applications might experience potentially long pauses dur-
ing garbage collection.10 At that time, our main concern was
that adding the write barriers needed to implement an incre-
mental garbage collector would have a negative impact on
Lua performance. To compensate for that we tried to make
the collector generational as well. We also wanted to keep
the adaptive behavior of the old collector, which adjusted the
frequency of collection cycles according to the total memory
in use. Moreover, we wanted to keep the collector simple,
like the rest of Lua.

We worked on the incremental generational garbage col-
lector for over a year. But since we did not have access to
applications with strong memory requirements (like games),
it was difficult for us to test the collector in real scenarios.
From March to December 2004 we released several work
versions trying to get concrete feedback on the performance
of the collector in real applications. We finally received re-
ports of bizarre memory-allocation behavior, which we later
managed to reproduce but not explain. In January 2005,
Mike Pall, an active member of the Lua community, came
up with memory-allocation graphs that explained the prob-
lem: in some scenarios, there were subtle interactions be-
tween the incremental behavior, the generational behavior,
and the adaptive behavior, such that the collector “adapted”

10 Erik Hougaard reported that the Crazy Ivan robot would initially drive
off course when Lua performed garbage collection (which could take a half
second, but that was enough). To stay in course, they had to stop both motors
and pause the robot during garbage collection.

for less and less frequent collections. Because it was getting
too complicated and unpredictable, we gave up the genera-
tional aspect and implemented a simpler incremental collec-
tor in Lua 5.1.

During that time, programmers had been experimenting
with the module system introduced in Lua 5.0. New pack-
ages started to be produced, and old packages migrated to the
new system. Package writers wanted to know the best way
to build modules. In July 2005, during the development of
Lua 5.1, an international Lua workshop organized by Mark
Hamburg was held at Adobe in San Jose. (A similar work-
shop organized by Wim Couwenberg and Daniel Silverstone
was held in September 2006 at Océ in Venlo.) One of the
presentations was about the novelties of Lua 5.1, and there
were long discussions about modules and packages. As a re-
sult, we made a few small but significant changes in the mod-
ule system. Despite our “mechanisms, not policy” guideline
for Lua, we defined a set of policies for writing modules
and loading packages, and made small changes to support
these policies better. Lua 5.1 was released in February 2006.
Although the original motivation for Lua 5.1 was incremen-
tal garbage collection, the improvement in the module sys-
tem was probably the most visible change. On the other
hand, that incremental garbage collection remained invisible
shows that it succeeded in avoiding long pauses.

6. Feature evolution
In this section, we discuss in detail the evolution of some of
the features of Lua.

6.1 Types
Types in Lua have been fairly stable. For a long time, Lua
had only six basic types: nil, number, string, table, function,
and userdata. (Actually, until Lua 3.0, C functions and Lua
functions had different types internally, but that difference
was transparent to callers.) The only real change happened
in Lua 5.0, which introduced two new types: threads and
booleans.

The type thread was introduced to represent coroutines.
Like all other Lua values, threads are first-class values.
To avoid creating new syntax, all primitive operations on
threads are provided by a library.

For a long time we resisted introducing boolean values in
Lua: nil was false and anything else was true. This state of
affairs was simple and seemed sufficient for our purposes.
However, nil was also used for absent fields in tables and
for undefined variables. In some applications, it is important
to allow table fields to be marked as false but still be seen
as present; an explicit false value can be used for this. In
Lua 5.0 we finally introduced boolean values true and false.
Nil is still treated as false. In retrospect, it would probably
have been better if nil raised an error in boolean expres-
sions, as it does in other expressions. This would be more
consistent with its role as proxy for undefined values. How-



ever, such a change would probably break many existing
programs. LISP has similar problems, with the empty list
representing both nil and false. Scheme explicitly represents
false and treats the empty list as true, but some implementa-
tions of Scheme still treat the empty list as false.

6.2 Tables
Lua 1.1 had three syntactical constructs to create tables:
‘@()’, ‘@[]’, and ‘@{}’. The simplest form was ‘@()’,
which created an empty table. An optional size could be
given at creation time, as an efficiency hint. The form ‘@[]’
was used to create arrays, as in ‘@[2,4,9,16,25]’. In
such tables, the keys were implicit natural numbers start-
ing at 1. The form ‘@{}’ was used to create records, as in
‘@{name="John",age=35}’. Such tables were sets of key-
value pairs in which the keys were explicit strings. A table
created with any of those forms could be modified dynam-
ically after creation, regardless of how it had been created.
Moreover, it was possible to provide user functions when
creating lists and records, as in ‘@foo[]’ or ‘@foo{}’. This
syntax was inherited from SOL and was the expression of
procedural data description, a major feature of Lua (see §2).
The semantics was that a table was created and then the
function was called with that table as its single argument.
The function was allowed to check and modify the table at
will, but its return values were ignored: the table was the
final value of the expression.

In Lua 2.1, the syntax for table creation was unified and
simplified: the leading ‘@’ was removed and the only con-
structor became ‘{· · ·}’. Lua 2.1 also allowed mixed con-
structors, such as

grades{8.5, 6.0, 9.2; name="John", major="math"}

in which the array part was separated from the record
part by a semicolon. Finally, ‘foo{· · ·}’ became sugar for
‘foo({· · ·})’. In other words, table constructors with func-
tions became ordinary function calls. As a consequence, the
function had to explicitly return the table (or whatever value
it chose). Dropping the ‘@’ from constructors was a trivial
change, but it actually changed the feel of the language, not
merely its looks. Trivial changes that improve the feel of a
language are not to be overlooked.

This simplification in the syntax and semantics of ta-
ble constructors had a side-effect, however. In Lua 1.1, the
equality operator was ‘=’. With the unification of table con-
structors in Lua 2.1, an expression like ‘{a=3}’ became am-
biguous, because it could mean a table with either a pair
("a", 3) or a pair (1, b), where b is the value of the equal-
ity ‘a=3’. To solve this ambiguity, in Lua 2.1 we changed the
equality operator from ‘=’ to ‘==’. With this change, ‘{a=3}’
meant a table with the pair ("a", 3), while ‘{a==3}’ meant
a table with the pair (1, b).

These changes made Lua 2.1 incompatible with Lua 1.1
(hence the change in the major version number). Neverthe-
less, since at that time virtually all Lua users were from Tec-

graf, this was not a fatal move: existing programs were easily
converted with the aid of ad-hoc tools that we wrote for this
task.

The syntax for table constructors has since remained
mostly unchanged, except for an addition introduced in
Lua 3.1: keys in the record part could be given by any ex-
pression, by enclosing the expression inside brackets, as in
‘{[10*x+f(y)]=47}’. In particular, this allowed keys to
be arbitrary strings, including reserved words and strings
with spaces. Thus, ‘{function=1}’ is not valid (because
‘function’ is a reserved word), but ‘{["function"]=1}’
is valid. Since Lua 5.0, it is also possible to freely intermix
the array part and the record part, and there is no need to use
semicolons in table constructors.

While the syntax of tables has evolved, the semantics of
tables in Lua has not changed at all: tables are still asso-
ciative arrays and can store arbitrary pairs of values. How-
ever, frequently in practice tables are used solely as arrays
(that is, with consecutive integer keys) or solely as records
(that is, with string keys). Because tables are the only data-
structuring mechanism in Lua, we have invested much ef-
fort in implementing them efficiently inside Lua’s core. Un-
til Lua 4.0, tables were implemented as pure hash tables,
with all pairs stored explicitly. In Lua 5.0 we introduced a
hybrid representation for tables: every table contains a hash
part and an array part, and both parts can be empty. Lua de-
tects whether a table is being used as an array and automat-
ically stores the values associated to integer indices in the
array part, instead of adding them to the hash part [31]. This
division occurs only at a low implementation level; access
to table fields is transparent, even to the virtual machine. Ta-
bles automatically adapt their two parts according to their
contents.

This hybrid scheme has two advantages. First, access
to values with integer keys is faster because no hashing is
needed. Second, and more important, the array part takes
roughly half the memory it would take if it were stored in
the hash part, because the keys are implicit in the array part
but explicit in the hash part. As a consequence, if a table is
being used as an array, it performs as an array, as long as
its integer keys are densely distributed. Moreover, no mem-
ory or time penalty is paid for the hash part, because it
does not even exist. Conversely, if the table is being used
as a record and not as an array, then the array part is likely
to be empty. These memory savings are important because
it is common for a Lua program to create many small ta-
bles (e.g., when tables are used to represent objects). Lua
tables also handle sparse arrays gracefully: the statement
‘a={[1000000000]=1}’ creates a table with a single entry
in its hash part, not an array with one billion elements.

Another reason for investing effort into an efficient im-
plementation of tables is that we can use tables for all kinds
of tasks. For instance, in Lua 5.0 the standard library func-
tions, which had existed since Lua 1.1 as global variables,



were moved to fields inside tables (see §5.5). More recently,
Lua 5.1 brought a complete package and module system
based on tables.

Tables play a prominent role in Lua’s core. On two oc-
casions we have been able to replace special data structures
inside the core with ordinary Lua tables: in Lua 4.0 for repre-
senting the global environment (which keeps all global vari-
ables) and in Lua 5.0 for implementing extensible seman-
tics (see §6.8). Starting with Lua 4.0, global variables are
stored in an ordinary Lua table, called the table of globals,
a simplification suggested by John Belmonte in April 2000.
In Lua 5.0 we replaced tags and tag methods (introduced
in Lua 3.0) by metatables and metamethods. Metatables are
ordinary Lua tables and metamethods are stored as fields
in metatables. Lua 5.0 also introduced environment tables
that can be attached to Lua functions; they are the tables
where global names in Lua functions are resolved at run
time. Lua 5.1 extended environment tables to C functions,
userdata, and threads, thus replacing the notion of global en-
vironment. These changes simplified both the implementa-
tion of Lua and the API for Lua and C programmers, be-
cause globals and metamethods can be manipulated within
Lua without the need for special functions.

6.3 Strings
Strings play a major role in scripting languages and so the
facilities to create and manipulate strings are an important
part of the usability of such languages.

The syntax for literal strings in Lua has had an interesting
evolution. Since Lua 1.1, a literal string can be delimited
by matching single or double quotes, and can contain C-like
escape sequences. The use of both single and double quotes
to delimit strings with the same semantics was a bit unusual
at the time. (For instance, in the tradition of shell languages,
Perl expands variables inside double-quoted strings, but not
inside single-quoted strings.) While these dual quotes allow
strings to contain one kind of quote without having to escape
it, escape sequences are still needed for arbitrary text.

Lua 2.2 introduced long strings, a feature not present in
classical programming languages, but present in most script-
ing languages.11 Long strings can run for several lines and
do not interpret escape sequences; they provide a convenient
way to include arbitrary text as a string, without having to
worry about its contents. However, it is not trivial to de-
sign a good syntax for long strings, especially because it
is common to use them to include arbitrary program text
(which may contain other long strings). This raises the ques-
tion of how long strings end and whether they may nest.
Until Lua 5.0, long strings were wrapped inside matching
‘[[· · ·]]’ and could contain nested long strings. Unfortu-
nately, the closing delimiter ‘]]’ could easily be part of a
valid Lua program in an unbalanced way, as in ‘a[b[i]]’,

11 ‘Long string’ is a Lua term. Other languages use terms such as ‘verbatim
text’ or ‘heredoc’.

or in other contexts, such as ‘<[!CDATA[· · ·]]>’ from XML.
So, it was hard to reliably wrap arbitrary text as a long string.

Lua 5.1 introduced a new form for long strings: text de-
limited by matching ‘[===[· · ·]===]’, where the number of
‘=’ characters is arbitrary (including zero). These new long
strings do not nest: a long string ends as soon as a closing de-
limiter with the right number of ‘=’ is seen. Nevertheless, it
is now easy to wrap arbitrary text, even text containing other
long strings or unbalanced ‘]= · · · =]’ sequences: simply use
an adequate number of ‘=’ characters.

6.4 Block comments
Comments in Lua are signaled by ‘--’ and continue to the
end of the line. This is the simplest kind of comment, and
is very effective. Several other languages use single-line
comments, with different marks. Languages that use ‘--’ for
comments include Ada and Haskell.

We never felt the need for multi-line comments, or block
comments, except as a quick way to disable code. There
was always the question of which syntax to use: the famil-
iar ‘/* · · · */’ syntax used in C and several other languages
does not mesh well with Lua’s single-line comments. There
was also the question of whether block comments could nest
or not, always a source of noise for users and of complexity
for the lexer. Nested block comments happen when program-
mers want to ‘comment out’ some block of code, to disable
it. Naturally, they expect that comments inside the block of
code are handled correctly, which can only happen if block
comments can be nested.

ANSI C supports block comments but does not allow
nesting. C programmers typically disable code by using the
C preprocessor idiom ‘#if 0 · · · #endif’. This scheme has
the clear advantage that it interacts gracefully with existing
comments in the disabled code. With this motivation and in-
spiration, we addressed the need for disabling blocks of code
in Lua — not the need for block comments — by introducing
conditional compilation in Lua 3.0 via pragmas inspired in
the C preprocessor. Although conditional compilation could
be used for block comments, we do not think that it ever
was. During work on Lua 4.0, we decided that the support
for conditional compilation was not worth the complexity in
the lexer and in its semantics for the user, especially after
not having reached any consensus about a full macro facil-
ity (see §7). So, in Lua 4.0 we removed support for con-
ditional compilation and Lua remained without support for
block comments.12

Block comments were finally introduced in Lua 5.0, in
the form ‘--[[· · ·]]’. Because they intentionally mimicked
the syntax of long strings (see §6.3), it was easy to modify
the lexer to support block comments. This similarity also
helped users to grasp both concepts and their syntax. Block

12 A further motivation was that by that time we had found a better way to
generate and use debug information, and so the pragmas that controlled this
were no longer needed. Removing conditional compilation allowed us to
get rid of all pragmas.



comments can also be used to disable code: the idiom is to
surround the code between two lines containing ‘--[[’ and
‘--]]’. The code inside those lines can be re-enabled by
simply adding a single ‘-’ at the start of the first line: both
lines then become harmless single-line comments.

Like long strings, block comments could nest, but they
had the same problems as long strings. In particular, valid
Lua code containing unbalanced ‘]]’s, such as ‘a[b[i]]’,
could not be reliably commented out in Lua 5.0. The new
scheme for long strings in Lua 5.1 also applies to block com-
ments, in the form of matching ‘--[===[· · ·]===]’, and so
provides a simple and robust solution for this problem.

6.5 Functions
Functions in Lua have always been first-class values. A func-
tion can be created at run time by compiling and executing
a string containing its definition.13 Since the introduction of
anonymous functions and upvalues in Lua 3.1, programmers
are able to create functions at run time without resorting to
compilation from text.

Functions in Lua, whether written in C or in Lua, have
no declaration. At call time they accept a variable number
of arguments: excess arguments are discarded and missing
arguments are given the value nil. (This coincides with the
semantics of multiple assignment.) C functions have always
been able to handle a variable number of arguments. Lua 2.5
introduced vararg Lua functions, marked by a parameter
list ending in ‘...’ (an experimental feature that became
official only in Lua 3.0). When a vararg function was called,
the arguments corresponding to the dots were collected into
a table named ‘arg’. While this was simple and mostly
convenient, there was no way to pass those arguments to
another function, except by unpacking this table. Because
programmers frequently want to just pass the arguments
along to other functions, Lua 5.1 allows ‘...’ to be used
in argument lists and on the right-hand side of assignments.
This avoids the creation of the ‘arg’ table if it is not needed.

The unit of execution of Lua is called a chunk; it is
simply a sequence of statements. A chunk in Lua is like
the main program in other languages: it can contain both
function definitions and executable code. (Actually, a func-
tion definition is executable code: an assignment.) At the
same time, a chunk closely resembles an ordinary Lua func-
tion. For instance, chunks have always had exactly the same
kind of bytecode as ordinary Lua functions. However, before
Lua 5.0, chunks needed some internal magic to start execut-
ing. Chunks began to look like ordinary functions in Lua 2.2,
when local variables outside functions were allowed as an
undocumented feature (that became official only in Lua 3.1).
Lua 2.5 allowed chunks to return values. In Lua 3.0 chunks
became functions internally, except that they were executed

13 Some people maintain that the ability to evaluate code from text at run
time and within the environment of the running program is what character-
izes scripting languages.

right after being compiled; they did not exist as functions at
the user level. This final step was taken in Lua 5.0, which
broke the loading and execution of chunks into two steps,
to provide host programmers better control for handling and
reporting errors. As a consequence, in Lua 5.0 chunks be-
came ordinary anonymous functions with no arguments. In
Lua 5.1 chunks became anonymous vararg functions and
thus can be passed values at execution time. Those values
are accessed via the new ‘...’ mechanism.

From a different point of view, chunks are like modules
in other languages: they usually provide functions and vari-
ables to the global environment. Originally, we did not in-
tend Lua to be used for large-scale programming and so we
did not feel the need to add an explicit notion of modules
to Lua. Moreover, we felt that tables would be sufficient for
building modules, if necessary. In Lua 5.0 we made that feel-
ing explicit by packaging all standard libraries into tables.
This encouraged other people to do the same and made it
easier to share libraries. We now feel that Lua can be used for
large-scale programming, especially after Lua 5.1 brought a
package system and a module system, both based on tables.

6.6 Lexical scoping
From an early stage in the development of Lua we started
thinking about first-class functions with full lexical scoping.
This is an elegant construct that fits well within Lua’s philos-
ophy of providing few but powerful constructs. It also makes
Lua apt for functional programming. However, we could not
figure out a reasonable implementation for full lexical scop-
ing. Since the beginning Lua has used a simple array stack
to keep activation records (where all local variables and tem-
poraries live). This implementation had proved simple and
efficient, and we saw no reason to change it. When we allow
nested functions with full lexical scoping, a variable used by
an inner function may outlive the function that created it, and
so we cannot use a stack discipline for such variables.

Simple Scheme implementations allocate frames in the
heap. Already in 1987, Dybvig [20] described how to use
a stack to allocate frames, provided that those frames did
not contain variables used by nested functions. His method
requires that the compiler know beforehand whether a vari-
able appears as a free variable in a nested function. This does
not suit the Lua compiler because it generates code to ma-
nipulate variables as soon as it parses an expression; at that
moment, it cannot know whether any variable is later used
free in a nested function. We wanted to keep this design for
implementing Lua, because of its simplicity and efficiency,
and so could not use Dybvig’s method. For the same rea-
son, we could not use advanced compiler techniques, such
as data-flow analysis.

Currently there are several optimization strategies to
avoid using the heap for frames (e.g., [21]), but they all
need compilers with intermediate representations, which the
Lua compiler does not use. McDermott’s proposal for stack
frame allocation [36], which is explicitly addressed to inter-



preters, is the only one we know of that does not require in-
termediate representation for code generation. Like our cur-
rent implementation [31], his proposal puts variables in the
stack and moves them to the heap on demand, if they go out
of scope while being used by a nested closure. However, his
proposal assumes that environments are represented by as-
sociation lists. So, after moving an environment to the heap,
the interpreter has to correct only the list header, and all ac-
cesses to local variables automatically go to the heap. Lua
uses real records as activation records, with local-variable
access being translated to direct accesses to the stack plus an
offset, and so cannot use McDermott’s method.

For a long time those difficulties kept us from introducing
nested first-class functions with full lexical scoping in Lua.
Finally, in Lua 3.1 we settled on a compromise that we called
upvalues. In this scheme, an inner function cannot access
and modify external variables when it runs, but it can access
the values those variables had when the function was cre-
ated. Those values are called upvalues. The main advantage
of upvalues is that they can be implemented with a simple
scheme: all local variables live in the stack; when a function
is created, it is wrapped in a closure containing copies of
the values of the external variables used by the function. In
other words, upvalues are the frozen values of external vari-
ables.14 To avoid misunderstandings, we created a new syn-
tax for accessing upvalues: ‘%varname’. This syntax made
it clear that the code was accessing the frozen value of that
variable, not the variable itself. Upvalues proved to be very
useful, despite being immutable. When necessary, we could
simulate mutable external variables by using a table as the
upvalue: although we could not change the table itself, we
could change its fields. This feature was especially useful for
anonymous functions passed to higher-order functions used
for table traversal and pattern matching.

In December 2000, Roberto wrote in the first draft of
his book [27] that “Lua has a form of proper lexical scop-
ing through upvalues.” In July 2001 John D. Ramsdell ar-
gued in the mailing list that “a language is either lexically
scoped or it is not; adding the adjective ‘proper’ to the phrase
‘lexical scoping’ is meaningless.” That message stirred us
to search for a better solution and a way to implement full
lexical scoping. By October 2001 we had an initial imple-
mentation of full lexical scoping and described it to the list.
The idea was to access each upvalue through an indirection
that pointed to the stack while the variable was in scope;
at the end of the scope a special virtual machine instruc-
tion “closed” the upvalue, moving the variable’s value to a
heap-allocated space and correcting the indirection to point
there. Open closures (those with upvalues still pointing to
the stack) were kept in a list to allow their correction and

14 A year later Java adopted a similar solution to allow inner classes. Instead
of freezing the value of an external variable, Java insists that you can only
access final variables in inner classes, and so ensures that the variable is
frozen.

the reuse of open upvalues. Reuse is essential to get the cor-
rect semantics. If two closures, sharing an external variable,
have their own upvalues, then at the end of the scope each
closure will have its own copy of the variable, but the cor-
rect semantics dictates that they should share the variable.
To ensure reuse, the algorithm that created closures worked
as follows: for each external variable used by the closure, it
first searched the list of open closures. If it found an upvalue
pointing to that external variable, it reused that upvalue; oth-
erwise, it created a new upvalue.

Edgar Toering, an active member of the Lua community,
misunderstood our description of lexical scoping. It turned
out that the way he understood it was better than our orig-
inal idea: instead of keeping a list of open closures, keep a
list of open upvalues. Because the number of local variables
used by closures is usually smaller than the number of clo-
sures using them (the first is statically limited by the program
text), his solution was more efficient than ours. It was also
easier to adapt to coroutines (which were being implemented
at around the same time), because we could keep a separate
list of upvalues for each stack. We added full lexical scoping
to Lua 5.0 using this algorithm because it met all our require-
ments: it could be implemented with a one-pass compiler; it
imposed no burden on functions that did not access exter-
nal local variables, because they continued to manipulate all
their local variables in the stack; and the cost to access an
external local variable was only one extra indirection [31].

6.7 Coroutines
For a long time we searched for some kind of first-class
continuations for Lua. This search was motivated by the
existence of first-class continuations in Scheme (always a
source of inspiration to us) and by demands from game
programmers for some mechanism for “soft” multithreading
(usually described as “some way to suspend a character and
continue it later”).

In 2000, Maria Julia de Lima implemented full first-class
continuations on top of Lua 4.0 alpha, as part of her Ph.D.
work [35]. She used a simple approach because, like lexi-
cal scoping, smarter techniques to implement continuations
were too complex compared to the overall simplicity of Lua.
The result was satisfactory for her experiments, but too slow
to be incorporated in a final product. Nevertheless, her im-
plementation uncovered a problem peculiar to Lua. Since
Lua is an extensible extension language, it is possible (and
common) to call Lua from C and C from Lua. Therefore, at
any given point in the execution of a Lua program, the cur-
rent continuation usually has parts in Lua mixed with parts
in C. Although it is possible to manipulate a Lua continu-
ation (essentially by manipulating the Lua call stack), it is
impossible to manipulate a C continuation within ANSI C.
At that time, we did not understand this problem deeply
enough. In particular, we could not figure out what the ex-
act restrictions related to C calls were. Lima simply forbade
any C calls in her implementation. Again, that solution was



satisfactory for her experiments, but unacceptable for an of-
ficial Lua version because the ease of mixing Lua code with
C code is one of Lua’s hallmarks.

Unaware of this difficulty, in December 2001 Thatcher
Ulrich announced in the mailing list:

I’ve created a patch for Lua 4.0 that makes calls from
Lua to Lua non-recursive (i.e., ‘stackless’). This al-
lows the implementation of a ‘sleep()’ call, which ex-
its from the host program [. . . ], and leaves the Lua
state in a condition where the script can be resumed
later via a call to a new API function, lua_resume.

In other words, he proposed an asymmetric coroutine mech-
anism, based on two primitives: yield (which he called sleep)
and resume. His patch followed the high-level description
given in the mailing list by Bret Mogilefsky on the changes
made to Lua 2.5 and 3.1 to add cooperative multitasking in
Grim Fandango. (Bret could not provide details, which were
proprietary.)

Shortly after this announcement, during the Lua Library
Design Workshop held at Harvard in February 2002, there
was some discussion about first-class continuations in Lua.
Some people claimed that, if first-class continuations were
deemed too complex, we could implement one-shot contin-
uations. Others argued that it would be better to implement
symmetric coroutines. But we could not find a proper imple-
mentation of any of these mechanisms that could solve the
difficulty related to C calls.

It took us some time to realize why it was hard to im-
plement symmetric coroutines in Lua, and also to under-
stand how Ulrich’s proposal, based on asymmetric corou-
tines, avoided our difficulties. Both one-shot continuations
and symmetric coroutines involve the manipulation of full
continuations. So, as long as these continuations include any
C part, it is impossible to capture them (except by using fa-
cilities outside ANSI C). In contrast, an asymmetric corou-
tine mechanism based on yield and resume manipulates par-
tial continuations: yield captures the continuation up to the
corresponding resume [19]. With asymmetric coroutines, the
current continuation can include C parts, as long as they
are outside the partial continuation being captured. In other
words, the only restriction is that we cannot yield across a
C call.

After that realization, and based on Ulrich’s proof-of-
concept implementation, we were able to implement asym-
metrical coroutines in Lua 5.0. The main change was that the
interpreter loop, which executes the instructions for the vir-
tual machine, ceased to be recursive. In previous versions,
when the interpreter loop executed a CALL instruction, it
called itself recursively to execute the called function. Since
Lua 5.0, the interpreter behaves more like a real CPU: when
it executes a CALL instruction, it pushes some context infor-
mation onto a call stack and proceeds to execute the called
function, restoring the context when that function returns.

After that change, the implementation of coroutines became
straightforward.

Unlike most implementations of asymmetrical corou-
tines, in Lua coroutines are what we call stackfull [19]. With
them, we can implement symmetrical coroutines and even
the call/1cc operator (call with current one-shot continua-
tion) proposed for Scheme [11]. However, the use of C func-
tions is severely restricted within these implementations.

We hope that the introduction of coroutines in Lua 5.0
marks a revival of coroutines as powerful control struc-
tures [18].

6.8 Extensible semantics
As mentioned in §5.2, we introduced extensible semantics
in Lua 2.1 in the form of fallbacks as a general mechanism
to allow the programmer to intervene whenever Lua did not
know how to proceed. Fallbacks thus provided a restricted
form of resumable exception handling. In particular, by us-
ing fallbacks, we could make a value respond to operations
not originally meant for it or make a value of one type be-
have like a value of another type. For instance, we could
make userdata and tables respond to arithmetic operations,
userdata behave as tables, strings behave as functions, etc.
Moreover, we could make a table respond to keys that were
absent in it, which is fundamental for implementing inheri-
tance. With fallbacks for table indexing and a little syntactic
sugar for defining and calling methods, object-oriented pro-
gramming with inheritance became possible in Lua.

Although objects, classes, and inheritance were not core
concepts in Lua, they could be implemented directly in Lua,
in many flavors, according to the needs of the application. In
other words, Lua provided mechanisms, not policy — a tenet
that we have tried to follow closely ever since.

The simplest kind of inheritance is inheritance by del-
egation, which was introduced by Self and adopted in
other prototype-based languages such as NewtonScript and
JavaScript. The code below shows an implementation of in-
heritance by delegation in Lua 2.1.

function Index(a,i)

if i == "parent" then

return nil

end

local p = a.parent

if type(p) == "table" then

return p[i]

else

return nil

end

end

setfallback("index", Index)

When a table was accessed for an absent field (be it an
attribute or a method), the index fallback was triggered.
Inheritance was implemented by setting the index fallback
to follow a chain of “parents” upwards, possibly triggering



the index fallback again, until a table had the required field
or the chain ended.

After setting that index fallback, the code below printed
‘red’ even though ‘b’ did not have a ‘color’ field:

a=Window{x=100, y=200, color="red"}

b=Window{x=300, y=400, parent=a}

print(b.color)

There was nothing magical or hard-coded about delega-
tion through a “parent” field. Programmers had complete
freedom: they could use a different name for the field con-
taining the parent, they could implement multiple inheri-
tance by trying a list of parents, etc. Our decision not to
hard-code any of those possible behaviors led to one of the
main design concepts of Lua: meta-mechanisms. Instead of
littering the language with lots of features, we provided ways
for users to program the features themselves, in the way they
wanted them, and only for those features they needed.

Fallbacks greatly increased the expressiveness of Lua.
However, fallbacks were global handlers: there was only one
function for each event that could occur. As a consequence,
it was difficult to mix different inheritance mechanisms in
the same program, because there was only one hook for
implementing inheritance (the index fallback). While this
might not be a problem for a program written by a single
group on top of its own object system, it became a problem
when one group tried to use code from other groups, because
their visions of the object system might not be consistent
with each other. Hooks for different mechanisms could be
chained, but chaining was slow, complicated, error-prone,
and not very polite. Fallback chaining did not encourage
code sharing and reuse; in practice almost nobody did it.
This made it very hard to use third-party libraries.

Lua 2.1 allowed userdata to be tagged. In Lua 3.0 we
extended tags to all values and replaced fallbacks with tag
methods. Tag methods were fallbacks that operated only on
values with a given tag. This made it possible to implement
independent notions of inheritance, for instance. No chain-
ing was needed because tag methods for one tag did not af-
fect tag methods for another tag.

The tag method scheme worked very well and lasted
until Lua 5.0, when we replaced tags and tag methods by
metatables and metamethods. Metatables are just ordinary
Lua tables and so can be manipulated within Lua without
the need for special functions. Like tags, metatables can
be used to represent user-defined types with userdata and
tables: all objects of the same “type” should share the same
metatable. Unlike tags, metatables and their contents are
naturally collected when no references remain to them. (In
contrast, tags and their tag methods had to live until the
end of the program.) The introduction of metatables also
simplified the implementation: while tag methods had their
own private representation inside Lua’s core, metatables use
mainly the standard table machinery.

The code below shows the implementation of inheritance
in Lua 5.0. The index metamethod replaces the index tag
method and is represented by the ‘__index’ field in the
metatable. The code makes ‘b’ inherit from ‘a’ by setting
a metatable for ‘b’ whose ‘__index’ field points to ‘a’.
(In general, index metamethods are functions, but we have
allowed them to be tables to support simple inheritance by
delegation directly.)

a=Window{x=100, y=200, color="red"}

b=Window{x=300, y=400}

setmetatable(b,{ __index = a })

print(b.color) --> red

6.9 C API
Lua is provided as a library of C functions and macros that
allow the host program to communicate with Lua. This API
between Lua and C is one of the main components of Lua; it
is what makes Lua an embeddable language.

Like the rest of the language, the API has gone through
many changes during Lua’s evolution. Unlike the rest of the
language, however, the API design received little outside in-
fluence, mainly because there has been little research activity
in this area.

The API has always been bi-directional because, since
Lua 1.0, we have considered calling Lua from C and call-
ing C from Lua equally important. Being able to call Lua
from C is what makes Lua an extension language, that is, a
language for extending applications through configuration,
macros, and other end-user customizations. Being able to
call C from Lua makes Lua an extensible language, because
we can use C functions to extend Lua with new facilities.
(That is why we say that Lua is an extensible extension lan-
guage [30].) Common to both these aspects are two mis-
matches between C and Lua to which the API must adjust:
static typing in C versus dynamic typing in Lua and manual
memory management in C versus automatic garbage collec-
tion in Lua.

Currently, the C API solves both difficulties by using an
abstract stack15 to exchange data between Lua and C. Every
C function called by Lua gets a new stack frame that initially
contains the function arguments. If the C function wants to
return values to Lua, it pushes those values onto the stack
just before returning.

Each stack slot can hold a Lua value of any type. For each
Lua type that has a corresponding representation in C (e.g.,
strings and numbers), there are two API functions: an injec-
tion function, which pushes onto the stack a Lua value cor-
responding to the given C value; and a projection function,
which returns a C value corresponding to the Lua value at
a given stack position. Lua values that have no correspond-
ing representation in C (e.g., tables and functions) can be
manipulated via the API by using their stack positions.

15 Throughout this section, ‘stack’ always means this abstract stack. Lua
never accesses the C stack.



Practically all API functions get their operands from the
stack and push their results onto the stack. Since the stack
can hold values of any Lua type, these API functions operate
with any Lua type, thus solving the typing mismatch. To
prevent the collection of Lua values in use by C code, the
values in the stack are never collected. When a C function
returns, its Lua stack frame vanishes, automatically releasing
all Lua values that the C function was using. These values
will eventually be collected if no further references to them
exist. This solves the memory management mismatch.

It took us a long time to arrive at the current API. To
discuss how the API evolved, we use as illustration the
C equivalent of the following Lua function:

function foo(t)

return t.x

end

In words, this function receives a single parameter, which
should be a table, and returns the value stored at the ‘x’ field
in that table. Despite its simplicity, this example illustrates
three important issues in the API: how to get parameters,
how to index tables, and how to return results.

In Lua 1.0, we would write foo in C as follows:

void foo_l (void) {

lua_Object t = lua_getparam(1);

lua_Object r = lua_getfield(t, "x");

lua_pushobject(r);

}

Note that the required value is stored at the string index "x"
because ‘t.x’ is syntactic sugar for ‘t["x"]’. Note also that
all components of the API start with ‘lua_’ (or ‘LUA_’) to
avoid name clashes with other C libraries.

To export this C function to Lua with the name ‘foo’ we
would do

lua_register("foo", foo_l);

After that, foo could be called from Lua code just like any
other Lua function:

t = {x = 200}

print(foo(t)) --> 200

A key component of the API was the type lua_Object,
defined as follows:

typedef struct Object *lua_Object;

In words, lua_Object was an abstract type that represented
Lua values in C opaquely. Arguments given to C functions
were accessed by calling lua_getparam, which returned a
lua_Object. In the example, we call lua_getparam once
to get the table, which is supposed to be the first argument to
foo. (Extra arguments are silently ignored.) Once the table
is available in C (as a lua_Object), we get the value of
its "x" field by calling lua_getfield. This value is also
represented in C as a lua_Object, which is finally sent back
to Lua by pushing it onto the stack with lua_pushobject.

The stack was another key component of the API. It
was used to pass values from C to Lua. There was one
push function for each Lua type with a direct representation
in C: lua_pushnumber for numbers, lua_pushstring for
strings, and lua_pushnil, for the special value nil. There
was also lua_pushobject, which allowed C to pass back
to Lua an arbitrary Lua value. When a C function returned,
all values in the stack were returned to Lua as the results of
the C function (functions in Lua can return multiple values).

Conceptually, a lua_Object was a union type, since it
could refer to any Lua value. Several scripting languages,
including Perl, Python, and Ruby, still use a union type
to represent their values in C. The main drawback of this
representation is that it is hard to design a garbage collector
for the language. Without extra information, the garbage
collector cannot know whether a value has a reference to it
stored as a union in the C code. Without this knowledge,
the collector may collect the value, making the union a
dangling pointer. Even when this union is a local variable in
a C function, this C function can call Lua again and trigger
garbage collection.

Ruby solves this problem by inspecting the C stack, a task
that cannot be done in a portable way. Perl and Python solve
this problem by providing explicit reference-count functions
for these union values. Once you increment the reference
count of a value, the garbage collector will not collect that
value until you decrement the count to zero. However, it is
not easy for the programmer to keep these reference counts
right. Not only is it easy to make a mistake, but it is dif-
ficult to find the error later (as anyone who has ever de-
bugged memory leaks and dangling pointers can attest). Fur-
thermore, reference counting cannot deal with cyclic data
structures that become garbage.

Lua never provided such reference-count functions. Be-
fore Lua 2.1, the best you could do to ensure that an unan-
chored lua_Object was not collected was to avoid calling
Lua whenever you had a reference to such a lua_Object.
(As long as you could ensure that the value referred to by
the union was also stored in a Lua variable, you were safe.)
Lua 2.1 brought an important change: it kept track of all
lua_Object values passed to C, ensuring that they were not
collected while the C function was active. When the C func-
tion returned to Lua, then (and only then) all references to
these lua_Object values were released, so that they could
be collected.16

More specifically, in Lua 2.1 a lua_Object ceased to
be a pointer to Lua’s internal data structures and became an
index into an internal array that stored all values that had to
be given to C:

typedef unsigned int lua_Object;

This change made the use of lua_Object reliable: while a
value was in that array, it would not be collected by Lua.

16 A similar method is used by JNI to handle “local references”.



When the C function returned, its whole array was erased,
and the values used by the function could be collected if pos-
sible. (This change also gave more freedom for implement-
ing the garbage collector, because it could move objects if
necessary; however, we did not followed this path.)

For simple uses, the Lua 2.1 behavior was very practi-
cal: it was safe and the C programmer did not have to worry
about reference counts. Each lua_Object behaved like a
local variable in C: the corresponding Lua value was guar-
anteed to be alive during the lifetime of the C function that
produced it. For more complex uses, however, this simple
scheme had two shortcomings that demanded extra mecha-
nisms: sometimes a lua_Object value had to be locked for
longer than the lifetime of the C function that produced it;
sometimes it had to be locked for a shorter time.

The first of those shortcomings had a simple solution:
Lua 2.1 introduced a system of references. The function
lua_lock got a Lua value from the stack and returned a
reference to it. This reference was an integer that could
be used any time later to retrieve that value, using the
lua_getlocked function. (There was also a lua_unlock
function, which destroyed a reference.) With such refer-
ences, it was easy to keep Lua values in non-local C vari-
ables.

The second shortcoming was more subtle. Objects stored
in the internal array were released only when the function
returned. If a function used too many values, it could over-
flow the array or cause an out-of-memory error. For instance,
consider the following higher-order iterator function, which
repeatedly calls a function and prints the result until the call
returns nil:

void l_loop (void) {

lua_Object f = lua_getparam(1);

for (;;) {

lua_Object res;

lua_callfunction(f);

res = lua_getresult(1);

if (lua_isnil(res)) break;

printf("%s\n", lua_getstring(res));

}

}

The problem with this code was that the string returned by
each call could not be collected until the end of the loop (that
is, of the whole C function), thus opening the possibility
of array overflow or memory exhaustion. This kind of error
can be very difficult to track, and so the implementation of
Lua 2.1 set a hard limit on the size of the internal array
that kept lua_Object values alive. That made the error
easier to track because Lua could say “too many objects in a
C function” instead of a generic out-of-memory error, but it
did not avoid the problem.

To address the problem, the API in Lua 2.1 offered two
functions, lua_beginblock and lua_endblock, that cre-
ated dynamic scopes (“blocks”) for lua_Object values;

all values created after a lua_beginblock were removed
from the internal array at the corresponding lua_endblock.
However, since a block discipline could not be forced onto
C programmers, it was all too common to forget to use these
blocks. Moreover, such explicit scope control was a little
tricky to use. For instance, a naive attempt to correct our
previous example by enclosing the for body within a block
would fail: we had to call lua_endblock just before the
break, too. This difficulty with the scope of Lua objects
persisted through several versions and was solved only in
Lua 4.0, when we redesigned the whole API. Nevertheless,
as we said before, for typical uses the API was very easy to
use, and most programmers never faced the kind of situation
described here. More important, the API was safe. Erroneous
use could produce well-defined errors, but not dangling ref-
erences or memory leaks.

Lua 2.1 brought other changes to the API. One was the
introduction of lua_getsubscript, which allowed the use
of any value to index a table. This function had no explicit
arguments: it got both the table and the key from the stack.
The old lua_getfield was redefined as a macro, for com-
patibility:

#define lua_getfield(o,f) \

(lua_pushobject(o), lua_pushstring(f), \

lua_getsubscript())

(Backward compatibility of the C API is usually imple-
mented using macros, whenever feasible.)

Despite all those changes, syntactically the API changed
little from Lua 1 to Lua 2. For instance, our illustrative func-
tion foo could be written in Lua 2 exactly as we wrote it for
Lua 1.0. The meaning of lua_Object was quite different,
and lua_getfield was implemented on top of new primi-
tive operations, but for the average user it was as if nothing
had changed. Thereafter, the API remained fairly stable until
Lua 4.0.

Lua 2.4 expanded the reference mechanism to support
weak references. A common design in Lua programs is to
have a Lua object (typically a table) acting as a proxy for a
C object. Frequently the C object must know who its proxy
is and so keeps a reference to the proxy. However, that
reference prevents the collection of the proxy object, even
when the object becomes inaccessible from Lua. In Lua 2.4,
the program could create a weak reference to the proxy; that
reference did not prevent the collection of the proxy object.
Any attempt to retrieve a collected reference resulted in a
special value LUA_NOOBJECT.

Lua 4.0 brought two main novelties in the C API: support
for multiple Lua states and a virtual stack for exchanging
values between C and Lua. Support for multiple, indepen-
dent Lua states was achieved by eliminating all global state.
Until Lua 3.0, only one Lua state existed and it was imple-
mented using many static variables scattered throughout the
code. Lua 3.1 introduced multiple independent Lua states;
all static variables were collected into a single C struct. An



API function was added to allow switching states, but only
one Lua state could be active at any moment. All other API
functions operated over the active Lua state, which remained
implicit and did not appear in the calls. Lua 4.0 introduced
explicit Lua states in the API. This created a big incompat-
ibility with previous versions.17 All C code that communi-
cated with Lua (in particular, all C functions registered to
Lua) had to be changed to include an explicit state argument
in calls to the C API. Since all C functions had to be rewrit-
ten anyway, we took this opportunity and made another ma-
jor change in the C – Lua communication in Lua 4.0: we
replaced the concept of lua_Object by an explicit virtual
stack used for all communication between Lua and C in both
directions. The stack could also be used to store temporary
values.

In Lua 4.0, our foo example could be written as follows:

int foo_l (lua_State *L) {

lua_pushstring(L, "x");

lua_gettable(L, 1);

return 1;

}

The first difference is the function signature: foo_l now re-
ceives a Lua state on which to operate and returns the num-
ber of values returned by the function in the stack. In pre-
vious versions, all values left in the stack when the func-
tion ended were returned to Lua. Now, because the stack is
used for all operations, it can contain intermediate values
that are not to be returned, and so the function needs to tell
Lua how many values in the stack to consider as return val-
ues. Another difference is that lua_getparam is no longer
needed, because function arguments come in the stack when
the function starts and can be directly accessed by their in-
dex, like any other stack value.

The last difference is the use of lua_gettable, which
replaced lua_getsubscript as the means to access table
fields. lua_gettable receives the table to be indexed as
a stack position (instead of as a Lua object), pops the key
from the top of the stack, and pushes the result. Moreover, it
leaves the table in the same stack position, because tables are
frequently indexed repeatedly. In foo_l, the table used by
lua_gettable is at stack position 1, because it is the first
argument to that function, and the key is the string "x",
which needs to be pushed onto the stack before calling
lua_gettable. That call replaces the key in the stack with
the corresponding table value. So, after lua_gettable,
there are two values in the stack: the table at position 1
and the result of the indexing at position 2, which is the top
of the stack. The C function returns 1 to tell Lua to use that
top value as the single result returned by the function.

To further illustrate the new API, here is an implementa-
tion of our loop example in Lua 4.0:

17 We provided a module that emulated the 3.2 API on top of the 4.0 API,
but we do not think it was used much.

int l_loop (lua_State *L) {

for (;;) {

lua_pushvalue(L, 1);

lua_call(L, 0, 1);

if (lua_isnil(L, -1)) break;

printf("%s\n", lua_tostring(L, -1));

lua_pop(L, 1);

}

return 0;

}

To call a Lua function, we push it onto the stack and then
push its arguments, if any (none in the example). Then we
call lua_call, telling how many arguments to get from
the stack (and therefore implicitly also telling where the
function is in the stack) and how many results we want from
the call. In the example, we have no arguments and expect
one result. The lua_call function removes the function and
its arguments from the stack and pushes back exactly the
requested number of results. The call to lua_pop removes
the single result from the stack, leaving the stack at the same
level as at the beginning of the loop. For convenience, we
can index the stack from the bottom, with positive indices,
or from the top, with negative indices. In the example, we
use index -1 in lua_isnil and lua_tostring to refer to
the top of the stack, which contains the function result.

With hindsight, the use of a single stack in the API seems
an obvious simplification, but when Lua 4.0 was released
many users complained about the complexity of the new
API. Although Lua 4.0 had a much cleaner conceptual model
for its API, the direct manipulation of the stack requires
some thought to get right. Many users were content to use
the previous API without any clear conceptual model of
what was going on behind the scenes. Simple tasks did
not require a conceptual model at all and the previous API
worked quite well for them. More complex tasks often broke
whatever private models users had, but most users never
programmed complex tasks in C. So, the new API was seen
as too complex at first. However, such skepticism gradually
vanished, as users came to understand and value the new
model, which proved to be simpler and much less error-
prone.

The possibility of multiple states in Lua 4.0 created an un-
expected problem for the reference mechanism. Previously,
a C library that needed to keep some object fixed could cre-
ate a reference to the object and store that reference in a
global C variable. In Lua 4.0, if a C library was to work with
several states, it had to keep an individual reference for each
state and so could not keep the reference in a global C vari-
able. To solve this difficulty, Lua 4.0 introduced the registry,
which is simply a regular Lua table available to C only. With
the registry, a C library that wants to keep a Lua object can
choose a unique key and associate the object with this key in
the registry. Because each independent Lua state has its own
registry, the C library can use the same key in each state to
manipulate the corresponding object.



We could quite easily implement the original reference
mechanism on top of the registry by using integer keys to
represent references. To create a new reference, we just find
an unused integer key and store the value at that key. Retriev-
ing a reference becomes a simple table access. However, we
could not implement weak references using the registry. So,
Lua 4.0 kept the previous reference mechanism. In Lua 5.0,
with the introduction of weak tables in the language, we
were finally able to eliminate the reference mechanism from
the core and move it to a library.

The C API has slowly evolved toward completeness.
Since Lua 4.0, all standard library functions can be written
using only the C API. Until then, Lua had a number of built-
in functions (from 7 in Lua 1.1 to 35 in Lua 3.2), most of
which could have been written using the C API but were not
because of a perceived need for speed. A few built-in func-
tions could not have been written using the C API because
the C API was not complete. For instance, until Lua 3.2 it
was not possible to iterate over the contents of a table using
the C API, although it was possible to do it in Lua using the
built-in function next. The C API is not yet complete and
not everything that can be done in Lua can be done in C;
for instance, the C API lacks functions for performing arith-
metic operations on Lua values. We plan to address this issue
in the next version.

6.10 Userdata
Since its first version, an important feature of Lua has been
its ability to manipulate C data, which is provided by a
special Lua data type called userdata. This ability is an
essential component in the extensibility of Lua.

For Lua programs, the userdata type has undergone no
changes at all throughout Lua’s evolution: although userdata
are first-class values, userdata is an opaque type and its only
valid operation in Lua is equality test. Any other operation
over userdata (creation, inspection, modification) must be
provided by C functions.

For C functions, the userdata type has undergone several
changes in Lua’s evolution. In Lua 1.0, a userdata value was
a simple void* pointer. The main drawback of this simplic-
ity was that a C library had no way to check whether a user-
data was valid. Although Lua code cannot create userdata
values, it can pass userdata created by one library to another
library that expects pointers to a different structure. Because
C functions had no mechanisms to check this mismatch, the
result of this pointer mismatch was usually fatal to the appli-
cation. We have always considered it unacceptable for a Lua
program to be able to crash the host application. Lua should
be a safe language.

To overcome the pointer mismatch problem, Lua 2.1 in-
troduced the concept of tags (which would become the seed
for tag methods in Lua 3.0). A tag was simply an arbitrary in-
teger value associated with a userdata. A userdata’s tag could
only be set once, when the userdata was created. Provided
that each C library used its own exclusive tag, C code could

easily ensure that a userdata had the expected type by check-
ing its tag. (The problem of how a library writer chose a tag
that did not clash with tags from other libraries remained
open. It was only solved in Lua 3.0, which provided tag man-
agement via lua_newtag.)

A bigger problem with Lua 2.1 was the management
of C resources. More often than not, a userdata pointed
to a dynamically allocated structure in C, which had to be
freed when its corresponding userdata was collected in Lua.
However, userdata were values, not objects. As such, they
were not collected (in the same way that numbers are not
collected). To overcome this restriction, a typical design was
to use a table as a proxy for the C structure in Lua, storing
the actual userdata in a predefined field of the proxy table.
When the table was collected, its finalizer would free the
corresponding C structure.

This simple solution created a subtle problem. Because
the userdata was stored in a regular field of the proxy table, a
malicious user could tamper with it from within Lua. Specif-
ically, a user could make a copy of the userdata and use the
copy after the table was collected. By that time, the corre-
sponding C structure had been destroyed, making the user-
data a dangling pointer, with disastrous results. To improve
the control of the life cycle of userdata, Lua 3.0 changed
userdata from values to objects, subject to garbage collec-
tion. Users could use the userdata finalizer (the garbage-
collection tag method) to free the corresponding C structure.
The correctness of Lua’s garbage collector ensured that a
userdata could not be used after being collected.

However, userdata as objects created an identity problem.
Given a userdata, it is trivial to get its corresponding pointer,
but frequently we need to do the reverse: given a C pointer,
we need to get its corresponding userdata.18 In Lua 2, two
userdata with the same pointer and the same tag would be
equal; equality was based on their values. So, given the
pointer and the tag, we had the userdata. In Lua 3, with
userdata being objects, equality was based on identity: two
userdata were equal only when they were the same userdata
(that is, the same object). Each userdata created was different
from all others. Therefore, a pointer and a tag would not be
enough to get the corresponding userdata.

To solve this difficulty, and also to reduce incompatibili-
ties with Lua 2, Lua 3 adopted the following semantics for
the operation of pushing a userdata onto the stack: if Lua
already had a userdata with the given pointer and tag, then
that userdata was pushed on the stack; otherwise, a new user-
data was created and pushed on the stack. So, it was easy for
C code to translate a C pointer to its corresponding userdata
in Lua. (Actually, the C code could be the same as it was in
Lua 2.)

18 A typical scenario for this need is the handling of callbacks in a GUI
toolkit. The C callback associated with a widget gets only a pointer to the
widget, but to pass this callback to Lua we need the userdata that represents
that widget in Lua.



However, Lua 3 behavior had a major drawback: it com-
bined into a single primitive (lua_pushuserdata) two ba-
sic operations: userdata searching and userdata creation.
For instance, it was impossible to check whether a given
C pointer had a corresponding userdata without creating that
userdata. Also, it was impossible to create a new userdata re-
gardless of its C pointer. If Lua already had a userdata with
that value, no new userdata would be created.

Lua 4 mitigated that drawback by introducing a new func-
tion, lua_newuserdata. Unlike lua_pushuserdata, this
function always created a new userdata. Moreover, what was
more important at that time, those userdata were able to store
arbitrary C data, instead of pointers only. The user would tell
lua_newuserdata the amount memory to be allocated and
lua_newuserdata returned a pointer to the allocated area.
By having Lua allocate memory for the user, several com-
mon tasks related to userdata were simplified. For instance,
C code did not need to handle memory-allocation errors, be-
cause they were handled by Lua. More important, C code
did not need to handle memory deallocation: memory used
by such userdata was released by Lua automatically, when
the userdata was collected.

However, Lua 4 still did not offer a nice solution to the
search problem (i.e., finding a userdata given its C pointer).
So, it kept the lua_pushuserdata operation with its old be-
havior, resulting in a hybrid system. It was only in Lua 5 that
we removed lua_pushuserdata and dissociated userdata
creation and searching. Actually, Lua 5 removed the search-
ing facility altogether. Lua 5 also introduced light userdata,
which store plain C pointer values, exactly like regular user-
data in Lua 1. A program can use a weak table to associate
C pointers (represented as light userdata) to its correspond-
ing “heavy” userdata in Lua.

As is usual in the evolution of Lua, userdata in Lua 5
is more flexible than it was in Lua 4; it is also simpler to
explain and simpler to implement. For simple uses, which
only require storing a C structure, userdata in Lua 5 is trivial
to use. For more complex needs, such as those that require
mapping a C pointer back to a Lua userdata, Lua 5 offers
the mechanisms (light userdata and weak tables) for users to
implement strategies suited to their applications.

6.11 Reflectivity
Since its very first version Lua has supported some reflective
facilities. A major reason for this support was the proposed
use of Lua as a configuration language to replace SOL. As
described in §4, our idea was that the programmer could
use the language itself to write type-checking routines, if
needed.

For instance, if a user wrote something like

T = @track{ y=9, x=10, id="1992-34" }

we wanted to be able to check that the track did have a y
field and that this field was a number. We also wanted to be
able to check that the track did not have extraneous fields

(possibly to catch typing mistakes). For these two tasks, we
needed access to the type of a Lua value and a mechanism to
traverse a table and visit all its pairs.

Lua 1.0 provided the needed functionality with only two
functions, which still exist: type and next. The type func-
tion returns a string describing the type of any given value
("number", "nil", "table", etc.). The next function re-
ceives a table and a key and returns a “next” key in the ta-
ble (in an arbitrary order). The call next(t,nil) returns a
“first” key. With next we can traverse a table and process all
its pairs. For instance, the following code prints all pairs in a
table t:19

k = next(t,nil)

while k do

print(k,t[k])

k = next(t,k)

end

Both these functions have a simple implementation: type
checks the internal tag of the given value and returns the
corresponding string; next finds the given key in the table
and then goes to the next key, following the internal table
representation.

In languages like Java and Smalltalk, reflection must
reify concepts like classes, methods, and instance variables.
Moreover, that reification demands new concepts like meta-
classes (the class of a reified class). Lua needs nothing like
that. In Lua, most facilities provided by the Java reflective
package come for free: classes and modules are tables, meth-
ods are functions. So, Lua does not need any special mech-
anism to reify them; they are plain program values. Simi-
larly, Lua does not need special mechanisms to build method
calls at run time (because functions are first-class values and
Lua’s parameter-passing mechanism naturally supports call-
ing a function with a variable number of arguments), and it
does not need special mechanisms to access a global vari-
able or an instance variable given its name (because they are
regular table fields).20

7. Retrospect
In this section we give a brief critique of Lua’s evolutionary
process, discussing what has worked well, what we regret,
and what we do not really regret but could have done differ-
ently.

One thing that has worked really well was the early de-
cision (made in Lua 1.0) to have tables as the sole data-
structuring mechanism in Lua. Tables have proved to be
powerful and efficient. The central role of tables in the lan-
guage and in its implementation is one of the main character-

19 Although this code still works, the current idiom is ‘for k,v in

pairs(t) do print(k,v) end’.
20 Before Lua 4.0, global variables were stored in a special data structure
inside the core, and we provided a nextvar function to traverse it. Since
Lua 4.0, global variables are stored in a regular Lua table and nextvar is
no longer needed.



istics of Lua. We have resisted user pressure to include other
data structures, mainly “real” arrays and tuples, first by be-
ing stubborn, but also by providing tables with an efficient
implementation and a flexible design. For instance, we can
represent a set in Lua by storing its elements as indices of
a table. This is possible only because Lua tables accept any
value as index.

Another thing that has worked well was our insistence on
portability, which was initially motivated by the diverse plat-
forms of Tecgraf’s clients. This allowed Lua to be compiled
for platforms we had never dreamed of supporting. In par-
ticular, Lua’s portability is one of the reasons that Lua has
been widely adopted for developing games. Restricted en-
vironments, such as game consoles, tend not to support the
complete semantics of the full standard C library. By gradu-
ally reducing the dependency of Lua’s core on the standard
C library, we are moving towards a Lua core that requires
only a free-standing ANSI C implementation. This move
aims mainly at embedding flexibility, but it also increases
portability. For instance, since Lua 3.1 it is easy to change
a few macros in the code to make Lua use an application-
specific memory allocator, instead of relying on malloc and
friends. Starting with Lua 5.1, the memory allocator can be
provided dynamically when creating a Lua state.

With hindsight, we consider that being raised by a small
committee has been very positive for the evolution of Lua.
Languages designed by large committees tend to be too
complicated and never quite fulfill the expectations of their
sponsors. Most successful languages are raised rather than
designed. They follow a slow bottom-up process, starting as
a small language with modest goals. The language evolves
as a consequence of actual feedback from real users, from
which design flaws surface and new features that are actually
useful are identified. This describes the evolution of Lua
quite well. We listen to users and their suggestions, but
we include a new feature in Lua only when all three of us
agree; otherwise, it is left for the future. It is much easier
to add features later than to remove them. This development
process has been essential to keep the language simple, and
simplicity is our most important asset. Most other qualities
of Lua — speed, small size, and portability — derive from its
simplicity.

Since its first version Lua has had real users, that is, users
others than ourselves, who care not about the language itself
but only about how to use it productively. Users have al-
ways given important contributions to the language, through
suggestions, complaints, use reports, and questions. Again,
our small committee plays an important role in managing
this feedback: its structure gives us enough inertia to listen
closely to users without having to follow all their sugges-
tions.

Lua is best described as a closed-development, open-
source project. This means that, even though the source
code is freely available for scrutiny and adaption, Lua is

not developed in a collaborative way. We do accept user
suggestions, but never their code verbatim. We always try
to do our own implementation.

Another unusual aspect of Lua’s evolution has been our
handling of incompatible changes. For a long time we con-
sidered simplicity and elegance more important than com-
patibility with previous versions. Whenever an old feature
was superseded by a new one, we simply removed the old
feature. Frequently (but not always), we provided some sort
of compatibility aid, such as a compatibility library, a con-
version script, or (more recently) compile-time options to
preserve the old feature. In any case, the user had to take
some measures when moving to a new version.

Some upgrades were a little traumatic. For instance, Tec-
graf, Lua’s birthplace, never upgraded from Lua 3.2 to
Lua 4.0 because of the big changes in the API. Currently,
a few Tecgraf programs have been updated to Lua 5.0, and
new programs are written in this version, too. But Tecgraf
still has a large body of code in Lua 3.2. The small size
and simplicity of Lua alleviates this problem: it is easy for a
project to keep to an old version of Lua, because the project
group can do its own maintenance of the code, when neces-
sary.

We do not really regret this evolution style. Gradually,
however, we have become more conservative. Not only is
our user and code base much larger than it once was, but
also we feel that Lua as a language is much more mature.

We should have introduced booleans from the start, but
we wanted to start with the simplest possible language. Not
introducing booleans from the start had a few unfortunate
side-effects. One is that we now have two false values: nil
and false. Another is that a common protocol used by Lua
functions to signal errors to their callers is to return nil
followed by an error message. It would have been better if
false had been used instead of nil in that case, with nil being
reserved for its primary role of signaling the absence of any
useful value.

Automatic coercion of strings to numbers in arithmetic
operations, which we took from Awk, could have been omit-
ted. (Coercion of numbers to strings in string operations is
convenient and less troublesome.)

Despite our “mechanisms, not policy” rule — which we
have found valuable in guiding the evolution of Lua — we
should have provided a precise set of policies for mod-
ules and packages earlier. The lack of a common policy for
building modules and installing packages prevents different
groups from sharing code and discourages the development
of a community code base. Lua 5.1 provides a set of policies
for modules and packages that we hope will remedy this sit-
uation.

As mentioned in §6.4, Lua 3.0 introduced support for con-
ditional compilation, mainly motivated to provide a means
to disable code. We received many requests for enhancing
conditional compilation in Lua, even by people who did not



use it! By far the most popular request was for a full macro
processor like the C preprocessor. Providing such a macro
processor in Lua would be consistent with our general phi-
losophy of providing extensible mechanisms. However, we
would like it to be programmable in Lua, not in some other
specialized language. We did not want to add a macro facil-
ity directly into the lexer, to avoid bloating it and slowing
compilation. Moreover, at that time the Lua parser was not
fully reentrant, and so there was no way to call Lua from
within the lexer. (This restriction was removed in Lua 5.1.)
So endless discussions ensued in the mailing list and within
the Lua team. But no consensus was ever reached and no so-
lution emerged. We still have not completely dismissed the
idea of providing Lua with a macro system: it would give
Lua extensible syntax to go with extensible semantics.

8. Conclusion
Lua has been used successfully in many large companies,
such as Adobe, Bombardier, Disney, Electronic Arts, Intel,
LucasArts, Microsoft, Nasa, Olivetti, and Philips. Many of
these companies have shipped Lua embedded into commer-
cial products, often exposing Lua scripts to end users.

Lua has been especially successful in games. It was said
recently that “Lua is rapidly becoming the de facto stan-
dard for game scripting” [37]. Two informal polls [5, 6] con-
ducted by gamedev.net (an important site for game program-
mers) in September 2003 and in June 2006 showed Lua as
the most popular scripting language for game development.
Roundtables dedicated to Lua in game development were
held at GDC in 2004 and 2006. Many famous games use
Lua: Baldur’s Gate, Escape from Monkey Island, FarCry,
Grim Fandango, Homeworld 2, Illarion, Impossible Crea-
tures, Psychonauts, The Sims, World of Warcraft. There are
two books on game development with Lua [42, 25], and sev-
eral other books on game development devote chapters to
Lua [23, 44, 41, 24].

The wide adoption of Lua in games came as a surprise to
us. We did not have game development as a target for Lua.
(Tecgraf is mostly concerned with scientific software.) With
hindsight, however, that success is understandable because
all the features that make Lua special are important in game
development:

Portability: Many games run on non-conventional plat-
forms, such as game consoles, that need special devel-
opment tools. An ANSI C compiler is all that is needed
to build Lua.

Ease of embedding: Games are demanding applications.
They need both performance, for its graphics and simula-
tions, and flexibility, for the creative staff. Not by chance,
many games are coded in (at least) two languages, one
for scripting and the other for coding the engine. Within
that framework, the ease of integrating Lua with another

language (mainly C++, in the case of games) is a big ad-
vantage.

Simplicity: Most game designers, scripters and level writers
are not professional programmers. For them, a language
with simple syntax and simple semantics is particularly
important.

Efficiency and small size: Games are demanding applica-
tions; the time alloted to running scripts is usually quite
small. Lua is one of the fastest scripting languages [1].
Game consoles are restricted environments. The script in-
terpreter should be parsimonious with resources. The Lua
core takes about 100K.

Control over code: Unlike most other software enterprises,
game production involves little evolution. In many cases,
once a game has been released, there are no updates or
new versions, only new games. So, it is easier to risk
using a new scripting language in a game. Whether the
scripting language will evolve or how it will evolve is not
a crucial point for game developers. All they need is the
version they used in the game. Since they have complete
access to the source code of Lua, they can simply keep
the same Lua version forever, if they so choose.

Liberal license: Most commercial games are not open
source. Some game companies even refuse to use any
kind of open-source code. The competition is hard, and
game companies tend to be secretive about their tech-
nologies. For them, a liberal license like the Lua license
is quite convenient.

Coroutines: It is easier to script games if the scripting lan-
guage supports multitasking because a character or ac-
tivity can be suspended and resumed later. Lua supports
cooperative multitasking in the form of coroutines [14].

Procedural data files: Lua’s original design goal of provid-
ing powerful data-description facilities allows games to
use Lua for data files, replacing special-format textual
data files with many benefits, especially homogeneity and
expressiveness.
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